Production, Handling and Characterization of Particulate Materials (eBook)

eBook Download: PDF
2015 | 1st ed. 2016
XVIII, 548 Seiten
Springer International Publishing (Verlag)
978-3-319-20949-4 (ISBN)

Lese- und Medienproben

Production, Handling and Characterization of Particulate Materials -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale. 
The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses  issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications.
In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field.

The aim of the book is to facilitate comparison of the different unit operations leading to optimum equipment choices for the production, handling and storage of particulate materials. An advantage of this approach is that unit operations that are common in one field of application are made accessible to other fields. The overall focus is on industrial application and the book includes some concrete examples. The book is an essential resource for students or researchers who work in collaboration with manufacturing industries or who are planning to make the switch from academia to industry.



Dr. Henk G. Merkus has been working at Delft University of Technology for about 35 years, the last 20 years of it in Particle Characterization in the Particle Technology Group. Since over 15 years he has been a member of ISO/TC24 on Sieving and Other Methods for Particle Size Measurement. Although retired, he continues to be active in giving courses on this subject, in the Netherlands as well as in Sweden and the United Kingdom.
Dr. Merkus is the editor and author of two other Springer books: 'Particulate Products' (2014) and 'Particle Size Measurements' (2009).
Dr. Gabriel M.H. Meesters is affiliated to DSM Food Specialities and Delft University of Technology Delft. He has 10 patents filed and 5 issued to his name.

Dr. Henk G. Merkus has been working at Delft University of Technology for about 35 years, the last 20 years of it in Particle Characterization in the Particle Technology Group. Since over 15 years he has been a member of ISO/TC24 on Sieving and Other Methods for Particle Size Measurement. Although retired, he continues to be active in giving courses on this subject, in the Netherlands as well as in Sweden and the United Kingdom. Dr. Merkus is the editor and author of two other Springer books: "Particulate Products" (2014) and “Particle Size Measurements” (2009). Dr. Gabriel M.H. Meesters is affiliated to DSM Food Specialities and Delft University of Technology Delft. He has 10 patents filed and 5 issued to his name.

Preface 6
Contents 8
Author Information 10
Chapter 1: Introduction 20
1.1 Objective of This Book 21
1.2 Production and Handling Processes 22
1.3 Characterization of Particulate Bulk Products and Processes 27
1.4 Particulate Characteristics in Relation to Production and Handling Processes 33
1.5 Set Up of the Book 43
1.6 Definitions, Abbreviations and Symbols 44
References 47
Chapter 2: Industrial Aspects of Crystallization 49
2.1 Introduction 50
2.1.1 Organization of the Chapter 50
2.2 Development of Crystallization Processes 51
2.3 Theoretical Background and Process Modeling of Crystallization 53
2.3.1 Crystalline Solids and Polymorphism 53
2.3.2 Solubility of a Solid 55
2.3.2.1 Solubility Examples in Relation to Crystallization Processes 56
2.3.3 Nucleation, Crystal Growth, Agglomeration and Attrition 59
2.3.3.1 Saturation and Super-Saturation 60
2.3.3.2 Primary Nucleation 61
2.3.3.3 Secondary Nucleation 62
2.3.3.4 Crystal Growth 63
2.3.3.5 Agglomeration 64
2.3.3.6 Attrition of Crystals 65
2.3.4 Modeling of Crystallization Processes 66
2.3.4.1 Dynamic Description of the Crystal Size Distribution 66
2.3.4.2 Distribution of Solids in Equipment 68
2.4 Industrial Aspects of Crystallization 69
2.4.1 Crystallization Equipment 69
2.4.2 Design and Control of Crystallizers 74
2.4.2.1 Batch Crystallization 75
2.4.2.2 Continuous Crystallization 79
2.4.2.3 Micro-Fluidic Crystallization Processes 82
2.5 Definitions, Abbreviations and Symbols 85
References 87
Chapter 3: Wet Colloid Synthesis: Precipitation and Dispersion 90
3.1 Introduction 90
3.2 Colloidal Stability 92
3.2.1 Sedimentation and Creaming 92
3.2.2 Flocculation 94
3.3 Colloidal Interactions 96
3.3.1 Van der Waals Interactions 96
3.3.2 Electrical Double Layer Interactions 97
3.3.3 DLVO Potential 99
3.3.4 Steric Interactions 99
3.3.5 Depletion Interaction 100
3.3.6 Adsorbed Layer Interaction 101
3.4 Nucleation and Growth 103
3.4.1 Ostwald Ripening 105
3.4.2 Aggregative Growth 106
3.4.3 Restructuring 108
3.4.4 Morphology 108
3.5 Surfactant Templates 109
3.5.1 Surfactant Parameters 111
3.5.2 Nanoreactors 112
3.5.3 Bicontinuous Microemulsion Templating 113
3.6 Design of a Synthesis Procedure 114
3.7 Outlook 118
3.8 Definitions, Abbreviations and Symbols 118
3.8.1 Definitions 118
3.8.2 Symbols 118
References 119
Chapter 4: Granulation and Tabletting 124
4.1 Introduction 124
4.2 Granulation and Compaction Processes 125
4.2.1 Wet and Dry Granulation 125
4.2.2 Wet Granulation Mechanisms 126
4.2.2.1 Nucleation 126
4.2.2.2 Growth and Consolidation 129
4.2.2.3 Breakage 130
4.2.3 Tabletting and Compression 132
4.3 Granulation Equipment Design, Operation and Control 134
4.3.1 Drum Granulators 134
4.3.2 Mixer Granulators 135
4.3.3 Fluidised Bed Granulators 136
4.3.4 Control of Wet Granulation Processes 138
4.4 Industrial Applications 140
4.4.1 Pharmaceuticals 140
4.4.1.1 Overview of the Current State in the Industry 140
4.4.1.2 Product Specifications and Quality 141
4.4.1.3 Raw Material Selection 141
4.4.2 Catalysts 142
4.4.2.1 Overview of the Current State in the Industry 142
4.4.2.2 Product Specifications and Quality 142
4.4.2.3 Raw Material Selection 143
4.4.3 Detergents 144
4.4.3.1 Overview of the Current State in the Industry 144
4.4.3.2 Product Specifications and Quality 144
4.4.3.3 Raw Material Selection 145
4.4.4 Foods 145
4.4.4.1 Overview of the Current State in the Industry 145
4.4.4.2 Product Specifications and Quality 146
4.4.4.3 Raw Material Selection 146
4.5 Outlook for the Future 147
4.6 Definitions, Abbreviations and Symbols 148
References 148
Chapter 5: Particulate Flow and Agglomeration in Food Extrusion 154
5.1 Introduction 155
5.2 Basics of Extrusion in Food Applications 157
5.3 Extrusion Hardware 159
5.4 Particulate Ingredients to Agglomerated Products: Role of Process Parameters 159
5.5 Characterization of Particulate Rheology 160
5.6 Visualization of Particulate Flow During Extrusion 168
5.7 Other Ongoing Research in Extrusion 169
5.8 Conclusions 170
5.9 Definitions, Abbreviations and Symbols 170
References 171
Chapter 6: Comminution 173
6.1 Introduction 173
6.1.1 Comminution Energy 174
6.2 Size Reduction Theories 175
6.3 Breakage Mechanisms 178
6.3.1 Compression 178
6.3.2 Impact 179
6.3.3 Abrasion/Attrition 180
6.4 Breakage Characterization 181
6.4.1 Bond Work Index 181
6.4.2 Single Particle Breakage Tests 183
6.5 Comminution Machines 189
6.5.1 Crushers 190
6.5.2 Compressed-Bed Breakage 191
6.5.3 Impactors 193
6.5.4 Tumbling Mills 195
6.5.5 Stirred Mills 197
6.5.6 Other Mills 198
6.5.7 Non-mechanical Breakage 201
6.6 Comminution Circuits 201
6.6.1 Typical Comminution Circuits 202
6.6.2 Flexible Circuit 204
6.6.3 Process Operation Control 205
6.7 Fine Grinding Circuits 206
6.7.1 Operational Variables of Stirred Mills 207
6.7.2 Effect of Operation Variables 208
6.7.3 Configuration of Stirred Mills 209
6.8 Definitions, Abbreviations and Symbols 211
References 212
Chapter 7: Atomization, Spraying, and Nebulization 216
7.1 Introduction 216
7.1.1 Newtonian and Non-Newtonian Atomization 219
7.1.2 Primary and Secondary Breakup 219
7.1.3 Disintegration of Liquid Jets and Liquid Sheets 221
7.2 Atomizers 226
7.2.1 Pressure Atomizers 227
7.2.2 Rotary Atomizers 228
7.2.3 Air-Assist (Pneumatic Twin-Fluid) Atomizers and Air-Blast Atomizers 229
7.2.4 Effervescent Atomizers 231
7.2.5 Acoustic Atomizers 231
7.2.6 Electrostatic Atomizers 232
7.2.7 Ultrasonic Atomizers 233
7.2.8 Whistle Atomizers 235
7.3 Spraying Processes 235
7.3.1 Spray-Drying Process 236
7.3.2 Thermal Spraying Processes 242
7.3.2.1 Plasma Spraying (PS) Process 247
7.3.2.2 Wire Arc Spray Process 251
7.3.2.3 Flame Spray Process 252
7.3.2.4 Detonation Gun (D-Gun) Process 253
7.3.2.5 High Velocity Oxygen Fuel (HVOF) Spray Process 253
7.3.2.6 Cold Spray Process 255
7.3.3 Nebulization Process 256
7.4 Spray Measurements 259
7.4.1 Spray and Particle Characterization Techniques 259
7.4.2 Measurements of Droplet Size and Velocity 260
7.4.2.1 Imaging Systems 261
7.4.2.2 Laser Diffraction Analyzer 262
7.4.2.3 Laser Doppler Velocimetry 263
7.4.2.4 Phase Doppler Particle Analyzer 263
7.5 Definitions, Abbreviations and Symbols 264
References 266
Chapter 8: Emulsification: Established and Future Technologies 272
8.1 Introduction 272
8.1.1 What Are Emulsions? 272
8.1.2 Examples of Complex Emulsions and Other Related Colloidal Systems 274
8.1.3 Main Physical Characteristics of Emulsions 275
8.2 Emulsion Stability and Ingredients 277
8.2.1 Creaming/Sedimentation 277
8.2.2 Bridging and Depletion Flocculation 279
8.2.3 Droplet Coalescence and Emulsion Ingredients 280
8.3 Droplet Formation Mechanisms 283
8.3.1 Interfacial Tension and Shear Forces 283
8.3.2 Laminar Plain Shear Flow 284
8.3.3 Laminar Extensional Flow 285
8.3.4 Turbulent Flow 286
8.4 Conventional Emulsification Devices 287
8.4.1 High Pressure Homogenizers 289
8.4.2 Rotor-Stator Systems 290
8.4.3 Ultrasound 291
8.5 Emerging Emulsification Technologies 292
8.5.1 Membrane Emulsification 293
8.5.2 Microfluidic Techniques 295
8.6 Comparison of Emulsification Techniques 297
8.7 Concluding Remarks 298
8.8 Definitions, Abbreviations and Symbols 298
References 300
Chapter 9: Mixing of Solid Materials 305
9.1 Introduction 305
9.2 Industrial Relevance of Solids Mixing 306
9.3 Mixing Mechanisms: Dispersive and Convective Mixing 307
9.4 Segregation and Demixing in Solids 308
9.4.1 Agglomeration Segregation 308
9.4.2 Flotation Segregation 310
9.4.3 Percolation Segregation 310
9.4.4 Transport Segregation 311
9.5 Mixture Quality: The Statistical Definition of Homogeneity 311
9.5.1 Degree of Mixing and Scale of Scrutiny 311
9.5.2 Ideal Mixtures 316
9.5.3 Ordered Mixtures 317
9.5.4 Random Mixtures 317
9.6 Measuring the Degree of Mixing and the Mixing Time 318
9.6.1 On-Line Procedures 320
9.6.2 Sampling Procedures 321
9.7 Equipment for Mixing of Solids 321
9.7.1 Mixing Stockpiles 321
9.7.2 Bunker and Silo Mixers 322
9.7.3 Rotating Mixers or Mixers with Rotating Component 324
9.7.4 Mixing by Feeding 326
9.8 Designing Solids Mixing Processes 327
9.8.1 Goal and Task Formulation 327
9.8.2 The Choice: Mixing with Batch or Continuous Mixers 329
9.8.3 Batch Mixing 329
9.8.4 Feeding and Weighing Equipment for a Batch Mixing Process 330
9.8.5 Continuous Mixing 332
9.8.6 Axial Dispersion, Residence Time Distribution and Variance Reduction Ratio 334
9.9 Protective Measures for Avoiding Dust Explosions in Mixing Installations 336
9.10 Definitions, Abbreviations and Symbols 337
References 339
Chapter 10: Particle Separations by Filtration and Sedimentation 341
10.1 Introduction 341
10.1.1 Cake Filtration Processes 342
10.1.2 Sedimentation Processes 344
10.1.3 Overview of the Chapter 347
10.2 Pressure Filters and Presses 348
10.2.1 Single Leaf (Nutsche) 349
10.2.2 Multi-element Leaf or Candle 349
10.2.3 Filter Presses 353
10.2.4 Variable Volume Filters and Presses 354
10.2.4.1 Horizontal Diaphragm Filter Press 355
10.2.4.2 Vertical Diaphragm Filter Press 355
10.2.4.3 Tube Press 357
10.2.4.4 Expression Press 357
10.2.5 Continuous Pressure Filters 358
10.2.5.1 Belt Press 358
10.2.5.2 Rotary Pressure Drum 359
10.2.5.3 Rotary Pressure Disc 359
10.2.6 Modelling of Filtration 360
10.2.6.1 Cake Formation at Constant Pressure 361
10.2.6.2 Cake Formation at Variable Pressure 362
10.2.7 Modelling of Compression Deliquoring 362
10.2.8 Modelling of Cake Washing 363
10.2.9 Modelling of Cake Gas Deliquoring 364
10.3 Vacuum Filters 366
10.3.1 Horizontal Belt 366
10.3.2 Horizontal Rotary Filters 368
10.3.3 Rotary Drum Filters 369
10.3.4 Rotary Disc Filters 371
10.3.5 Modelling of Filtration 372
10.3.6 Modelling of Cake Washing and Gas Deliquoring 373
10.4 Filtering Centrifuges 373
10.4.1 Basket 373
10.4.2 Cone Screen 376
10.4.3 Pusher 377
10.4.4 Baffle Centrifuge 378
10.4.5 Inverting Bag 379
10.4.6 Modelling of Filtration 379
10.4.7 Modelling of Cake Washing and Deliquoring 381
10.5 Centrifugal Sedimenters 381
10.5.1 Tubular Bowl Centrifuge 381
10.5.2 Basket Centrifuge 383
10.5.3 Disc Stack Centrifuge 383
10.5.4 Scroll Decanter Centrifuge 385
10.5.5 Hydrocyclone 386
10.5.6 Modelling 387
10.6 Gravity Thickeners 388
10.6.1 Circular Basin Thickener 389
10.6.2 High Capacity Thickeners 390
10.6.2.1 Circular 390
10.6.2.2 Deep Cone 390
10.6.2.3 Lamella 391
10.6.3 Modelling 392
10.7 Membrane Filters 392
10.7.1 Low Shear Crossflow 393
10.7.2 High Shear Crossflow 396
10.8 Outlook for the Future 397
10.9 Definitions, Abbreviations and Symbols 398
References 400
Chapter 11: Flotation 402
11.1 Introduction 402
11.2 The Flotation Process 403
11.3 Flotation Background 404
11.4 Flotation Equipment 413
11.5 Definitions, Abbreviations and Symbols 416
References 417
Suggested Reading 417
Further References 417
Chapter 12: Classification 419
12.1 Introduction 419
12.2 (Hydro)cyclones 423
12.3 Collection and Separation Efficiency 426
12.4 Cyclone Design and Scale-Up 430
12.5 Definitions, Abbreviations and Symbols 433
References 435
Chapter 13: Storage and Discharge of Bulk Solids 436
13.1 Introduction 436
13.2 Properties of Bulk Solids Related to Silo Design 439
13.2.1 Stresses 439
13.2.2 Compressive Strength 440
13.2.3 Practical Determination of Flow Properties 444
13.2.3.1 Yield Locus 444
13.2.3.2 Time Yield Locus 446
13.2.3.3 Wall Yield Locus 446
13.2.3.4 Shear Testers 447
13.3 Flow Profiles: Mass Flow and Funnel Flow 450
13.4 Stresses in Silos 450
13.5 Silo Design for Flow 454
13.5.1 Problems 454
13.5.2 Jenike´s Design Procedure 456
13.5.2.1 Design of Mass Flow Silos 456
13.5.2.2 Design of Funnel Flow Silos 466
13.5.3 Maximum Discharge Rate 471
13.6 Silo Configurations 472
13.6.1 Influence of Flow Properties 472
13.6.2 Critical Outlet Dimensions 473
13.6.3 Hopper Shape 475
13.6.4 Transitions and Inclined Walls 476
13.6.5 Discharge Aids 477
13.6.6 Discharge Devices 480
13.7 Structural Silo Design 484
13.8 Definitions, Abbreviations and Symbols 485
References 487
Chapter 14: Solids Transport and Handling 490
14.1 Introduction 490
14.2 Various Modes of Bulk Material Transport 491
14.3 Transport Economics 492
14.4 Gravity Driven Processes 492
14.5 Belt Conveyors 493
14.6 Screw Conveyors 495
14.7 Vibratory Conveyors 495
14.8 Slurry or Hydraulic Transport 496
14.9 Mixing and Segregation 497
14.10 Pneumatic Conveying 499
14.10.1 Pickup and Saltation Design Parameters 501
14.10.2 Dense Phase Conveying 503
14.10.3 Plug Flow 506
14.10.4 Flow Measurements and Indicators 507
14.10.5 Electrostatics in Pneumatic Conveying 509
14.10.6 Simulations 510
14.10.7 Basic Physics 512
14.10.8 Solid Handling Tips [5] 518
14.11 Definitions, Abbreviations and Symbols 519
References 521
Chapter 15: Sampling and Characterization of Bulk Particulate Materials and Products 525
15.1 The Sampling of Particulate Materials 525
15.1.1 Introduction 525
15.1.2 Simple Random Selection 527
15.1.3 Systematic Sampling 529
15.2 The Retrieval of Samples from a Batch or Process Stream 530
15.2.1 Summary of Particulate Material Sampling 535
15.2.2 Sub-sampling 535
15.3 Characterisation of the Particulate Material 536
15.3.1 Particle Size and Size Distribution 536
15.3.1.1 Influence of Particle Shape on Measured Particle Size 538
15.3.1.2 Shape Factors 540
15.3.1.3 Methods of Size Measurement 540
Sieves 541
Light 541
ESZ 542
Optical Microscopy (Plus Image Analysis) 542
Nano Sizers 543
15.3.2 Bulk Properties 544
15.3.2.1 Bulk Density 544
Some Definitions of Bulk Density Terms 546
15.3.2.2 Flowability 546
Angle of Repose 547
15.3.2.3 Spider Diagrams 550
Ideal `Easy Flow´ Material 551
Ideal `Poor Flow´ Material 551
15.4 Definitions, Abbreviations and Symbols 553
References 554
Standards 554
Index 556

Erscheint lt. Verlag 26.11.2015
Reihe/Serie Particle Technology Series
Zusatzinfo XVIII, 548 p. 279 illus., 120 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik
Schlagworte Commercial Particle-based Materials • Commercial Production of Nanoparticles • Industrial Processing of Powders • Particles and Nanoparticles • particle separation
ISBN-10 3-319-20949-3 / 3319209493
ISBN-13 978-3-319-20949-4 / 9783319209494
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99