Advances in Nanotheranostics I (eBook)
VIII, 336 Seiten
Springer Berlin (Verlag)
978-3-662-48544-6 (ISBN)
This book highlights the recent advances in nanotheranostics from basic research to potential applications, and discusses the modular design and engineering of multiplex nanoparticles including gold nanostructures, luminescent nanoparticles, dendrimers and liposomes. Each chapter demonstrates multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy as new modalities for cancer theranostics. This comprehensive book presents expert views on the latest developments in theranostic nanomedicine.
It focuses on potential theranostic applications of multifunctional nanoparticles ranging from identifying noninvasively cancer cells by molecular detection, and visualizing in vivo drug delivery by means of contrast enhanced imaging, to destroying cancer cell s with minimal side effects via selective accumulation at tumor sites, and real-time monitoring therapeutic effectiveness. It also presents an interdisciplinary survey of nanotheranostics and as such is a valuable resource for researchers and students in related fields.
Zhifei Dai is a Professor at the Department of Biomedical Engineering, College of Engineering, Peking University, China.
Prof. Zhifei Dai obtained his Ph.D. in Physical Chemistry at the Institute of Photographic Chemistry, Chinese Academy of Sciences in 1998. From 1999 to 2005, he worked at the School of Sciences, Kwansei Gakuin University in Japan, Max-Planck Institute of Colloids and Interfaces in Germany, and the School of Medicine, Emory University in USA, respectively. In March 2005, he became a Professor at the School of Life Science and Technology, Harbin Institute of Technology, China. In May 2012, he moved to the Department of Biomedical Engineering, College of Engineering, Peking University, China. His research focuses on the multifunctional nanoparticles for drug delivery and contrast enhanced imaging. He is a member of editorial board for several international and national journals such as Bioconjugate Chemistry, Theranostics, Journal of Interdisciplinary Nanomedicine, IET Nanobiotechnology, BioMed International Research, Chinese Journal of Nuclear Medicine and Molecular Imaging and so on. He is now a standing committee member of China Association of Medical Ultrasound Equipment and Chinese Association of Ultrasound in Medicine and Engineering, an executive member of the council of Chinese Society for Functional Materials, and a committee member of the Acoustic Society of China. He received many honors and awards including National Natural Science Fund for Outstanding Young Researcher, New Century Talents of Chinese Ministry of Education, Longjiang Scholar Distinguished Professor, and the First Prize of the Natural Science Award of Heilongjiang Province.
Prof. Zhifei Dai obtained his Ph.D. in Physical Chemistry at the Institute of Photographic Chemistry, Chinese Academy of Sciences in 1998. From 1999 to 2005, he worked at the School of Sciences, Kwansei Gakuin University in Japan, Max-Planck Institute of Colloids and Interfaces in Germany, and the School of Medicine, Emory University in USA, respectively. In March 2005, he became a Professor at the School of Life Science and Technology, Harbin Institute of Technology, China. In May 2012, he moved to the Department of Biomedical Engineering, College of Engineering, Peking University, China. His research focuses on the multifunctional nanoparticles for drug delivery and contrast enhanced imaging. He is a member of editorial board for several international and national journals such as Bioconjugate Chemistry, Theranostics, Journal of Interdisciplinary Nanomedicine, IET Nanobiotechnology, BioMed International Research, Chinese Journal of Nuclear Medicine and Molecular Imaging and so on. He is now a standing committee member of China Association of Medical Ultrasound Equipment and Chinese Association of Ultrasound in Medicine and Engineering, an executive member of the council of Chinese Society for Functional Materials, and a committee member of the Acoustic Society of China. He received many honors and awards including National Natural Science Fund for Outstanding Young Researcher, New Century Talents of Chinese Ministry of Education, Longjiang Scholar Distinguished Professor, and the First Prize of the Natural Science Award of Heilongjiang Province.
Preface 6
Contents 8
Part I: Gold Nanostructures Based Theranostics 10
Chapter 1: Near-Infrared Light-Mediated Gold Nanoplatforms for Cancer Theranostics 11
1.1 Introduction 12
1.2 Near-Infrared Light-Mediated Cancer Imaging by Au Nanostructures 12
1.2.1 Dark-Field Microscopy 14
1.2.2 Two-Photon Luminescence (TPL) 16
1.2.3 Photoacoustic Tomography (PAT) 18
1.2.4 X-ray Computed Tomography (CT) 19
1.2.5 Optical Coherence Tomography (OCT) 20
1.2.6 Surface-Enhanced Raman Scattering (SERS) 21
1.3 Cancer Photothermal Therapy by Au Nanostructures 22
1.4 Functionalization of Au Nanostructures 24
1.4.1 Noncovalent Functionalization 26
1.4.2 Covalent Functionalization 27
1.5 Au Nanoshells (AuNSs) 28
1.6 Au Nanorods (AuNRs) 31
1.7 Hollow Au Nanospheres (HAuNSs) 33
1.8 Au Nanocages (AuNCs) 36
1.9 Au Nanostars 38
1.10 Other Au Nanostructures 40
1.11 Strategy for Combatting Cancer Drug Resistance and Inhibiting Cancer Stem Cells and Cancer Metastasis 42
1.12 Conclusions and Perspectives 45
References 51
Chapter 2: Gold Nanostructures for Cancer Imaging and Therapy 61
2.1 Introduction 61
2.2 Plasmonic Properties and Surface Functionalization of Gold Nanostructures 62
2.2.1 Radiative Properties 62
2.2.2 Nonradiative Photothermal Effects 66
2.2.3 Surface Functionalization 67
2.3 Gold Nanostructures for Photothermal Therapy 69
2.3.1 Gold Nanoshells 71
2.3.2 Gold Nanorods 74
2.3.3 Gold Nanocages 76
2.3.4 Other Gold Nanostructures 77
2.4 Combination of Photothermal Therapy with Other Therapeutic Approaches 79
2.4.1 Combination of Photothermal Therapy with Photodynamic Therapy 79
2.4.2 Combination of Photothermal Therapy with Chemotherapy 81
2.5 Gold Nanostructures for Diagnostics 84
2.5.1 Dark-Field Imaging (DFI) 84
2.5.2 Optical Coherence Tomography 85
2.5.3 Two-Photon Luminescence 87
2.5.4 Photoacoustic Imaging 88
2.5.5 Computed Tomography 90
2.5.6 Surface-Enhanced Raman Scattering (SERS) Based Imaging 91
2.6 Gold Nanostructures for Imaging-Guided Therapy 94
2.7 Concluding Remarks 97
References 97
Chapter 3: Gold Nanorods for Biomedical Imaging and Therapy in Cancer 110
3.1 Introduction 110
3.2 Gold Nanorod Synthesis 112
3.3 Surface Modification and Functionalization 119
3.4 Properties 123
3.4.1 Localized Surface Plasmon Resonance Effect 124
3.4.2 Surface-Enhanced Raman Scattering 125
3.4.3 Single-/Two-Photon Fluorescence 125
3.4.4 Near-Field Plasmon Coupling 125
3.4.5 Photosensitive Effect 126
3.5 Biomedical Applications 126
3.5.1 AuNRs as Biomedical Imaging Agents 127
3.5.1.1 Light Scattering Imaging 127
3.5.1.2 Two-Photon Fluorescence Imaging 128
3.5.1.3 Photoacoustic Imaging 129
3.5.2 AuNRs for Cancer Therapy 130
3.5.2.1 Drug/Gene Therapy 130
3.5.2.2 Photothermal Therapy 131
3.5.2.3 Photodynamic Therapy 132
3.5.2.4 Combined Applications 133
3.5.3 AuNRs for New Applications 134
3.5.3.1 New Unique Way to Challenge Drug Resistance 135
3.5.3.2 Localized Electric Field of Plasmonic AuNR-Enhanced Photodynamic Therapy 135
3.5.3.3 Highly Efficient and Safe Photodynamic Therapy 137
3.6 Perspectives 137
References 138
Part II: Theranostic Luminescent Nanoparticles 144
Chapter 4: Lanthanide-Doped Upconversion Nanoparticles for Imaging-Guided Drug Delivery and Therapy 145
4.1 Introduction 145
4.2 Engineering of UCNPs for Biomedical Applications 146
4.2.1 Basic Mechanism of UCNPs 146
4.2.2 Synthesis of UCNPs 147
4.2.3 UCNPs with Core@shell Structures 148
4.2.4 Surface Modification for Upconversion Enhancing and Bio-conjugation 151
4.3 Biosafety of UCNPs 154
4.3.1 Internalization of UCNPs into Cells 154
4.3.2 Biodistributions of Injected UCNPs in Mice Models 154
4.3.3 Excretion of UCNPs 155
4.3.4 Cellular and In Vivo Toxicity of UCNPs 156
4.4 UCNPs as Imaging Contrast Reagents 157
4.5 UCNPs as Drug Delivery Nanoplatform 159
4.5.1 UCNPs as Traditional Drug Delivery Tools 159
4.5.2 Light-Controllable Drug Release Based on UCNPs 161
4.5.3 UCNPs for Gene Delivery 162
4.6 UCNPs as Phototherapeutic Reagents 163
4.6.1 Photodynamic Therapy 163
4.6.2 Photothermal Therapy 166
4.6.3 Combined PDT/PTT 166
4.7 Conclusion and Prospects 167
References 168
Chapter 5: Engineering Upconversion Nanoparticles for Multimodal Biomedical Imaging-Guided Therapeutic Applications 171
5.1 Introduction 171
5.2 Hydrophilic Surface Modification of UCNPs 173
5.2.1 Polymer Coating Modification 173
5.2.2 Ligand-Free Synthesis Modification 174
5.2.3 Silica Coating Modification 174
5.3 Engineering UCNPs for Multimodal Biomedical Imaging 175
5.3.1 UCNPs for Single-Modality UCL Imaging 175
5.3.1.1 UCNPs for Multicolor UCL Imaging 175
5.3.1.2 UCNPs for Tracking UCL Imaging 177
5.3.1.3 UCNPs for Tumor-Targeted UCL Imaging 178
5.3.1.4 UCNPs for Vascular UCL Imaging 179
5.3.1.5 UCNPs for Lymphatic UCL Imaging 179
5.3.1.6 UCNPs for Hypoxic UCL Imaging 181
5.3.2 UCNPs for Multimodal Imaging 181
5.3.2.1 UCNPs for MR/UCL Bimodal Imaging 181
5.3.2.2 UCNPs for UCL/MRI/CT (PET/SPECT) Trimodal Imaging 184
5.3.2.3 UCNPs for UCL/MRI/CT/SPECT Four-Modal Imaging 187
5.4 Engineering UCNPs for Imaging-Guided Synergetic Therapy 187
5.4.1 UCNPs for PDT 188
5.4.2 UCNPs for Radiotherapy 191
5.4.3 UCNPs for Synergetic Therapy 193
5.5 Summary and Outlook 194
References 195
Chapter 6: Multifunctional Quantum Dot-Based Nanoscale Modalities for Theranostic Applications 202
6.1 Quantum Dot 203
6.1.1 Optical Imaging 203
6.1.2 Quantum Dot Fluorescence Characteristics 203
6.1.3 Quantum Dot Synthesis and Composition 204
6.1.4 Quantum Dot Solubilisation and Functionalisation 205
6.1.5 Quantum Dot in Biomedical Application 206
6.1.6 Quantum Dot Biodistribution and Pharmacokinetics In Vivo 207
6.1.7 Toxicity Profiles of Non-functionalised Quantum Dot 208
6.2 Quantum Dot for Theranostic Applications 209
6.2.1 Quantum Dot-Based Gene Therapy Modalities 209
6.2.2 Quantum Dot-Based Chemotherapy Modalities 212
6.2.3 Quantum Dot-Based Photodynamic Therapy Modalities 213
6.3 Conclusion 214
References 214
Chapter 7: Organic Dye-Loaded Nanoparticles for Imaging-Guided Cancer Therapy 222
7.1 Introduction of Organic Dye 222
7.1.1 ICG 223
7.1.2 IR 700 224
7.1.3 IR 780 225
7.1.4 IR825 225
7.1.5 Ce6 226
7.1.6 FITC 226
7.2 Organic Dye for Imaging-Guided Surgical Therapy 227
7.3 Organic Dye-Conjugated Antibody for Imaging-Guided Photoimmunotherapy 229
7.4 Organic Dye-Loaded Inorganic Nanoparticles for Imaging-Guided Phototherapy 230
7.4.1 Calcium Phosphosilicate Nanoparticles 230
7.4.2 Poly(allylamine hydrochloride)-Assembled Mesocapsules 232
7.4.3 SiO2 Nanoparticles 233
7.5 Organic Dye-Loaded Organic Nanoparticles for Imaging-Guided Phototherapy 234
7.5.1 Dye-Loaded Polymeric Nanomicelles for Imaging-Guided Tumor Phototherapy 234
7.5.2 Poly(ethylene glycol)–Distearoylphosphatidylethanolamine Block Copolymers (DSPE–PEG) Nanomicelles 235
7.5.3 PEG-b-poly(aspartate) (PEG–PAsp) Block Copolymer Nanomicelles 237
7.5.4 Surfactant Micelles 239
7.5.5 Polypeptide Micelles 240
7.5.6 Pluronic F-127 Micelles 240
7.5.7 Dye-Loaded PLGA for Imaging-Guided Tumor Phototherapy 241
7.5.8 Dye-Loaded Protein Nanoparticles for Imaging-Guided Tumor Phototherapy 242
7.5.9 Dye-Loaded Ferritin Nanocages 242
7.5.10 Dye-Loaded Albumin Nanoparticles 243
7.6 Prospects and Outlook 246
References 246
Part III: Dendrimers and Liposomes for Theranostics 251
Chapter 8: Dendrimer-Based Nanodevices as Contrast Agents for MR Imaging Applications 252
8.1 Introduction 253
8.2 Dendrimer-Based Complexes for T1-Weighted MR Imaging 254
8.2.1 Dendrimer-Gd Complexes 254
8.2.1.1 Dendrimer-Gd Complexes 254
8.2.1.2 Multifunctional Dendrimer-Gd Complexes for Targeted Tumor MR Imaging 256
8.2.2 Dendrimer-Based Mn Complexes 257
8.3 Dendrimer-Based Iron Oxide Nanoparticles for T2-Weighted MR Imaging 260
8.3.1 Dendrimer-Based Iron Oxide Nanoparticles 260
8.3.1.1 Dendrimer-Stabilized IO NPs 260
8.3.1.2 Dendrimer-Assembled IO NPs 261
8.3.2 Dendrimer-Modified Lanthanide T2 MR Imaging Contrast Agents 261
8.4 Dendrimer-Based Systems for Dual Modality Imaging 263
8.4.1 Dendrimer-Based Dual-Mode MR/CT Imaging Contrast Agents 263
8.4.2 Dendrimer-Based MR/Fluorescence Dual-Mode Imaging Applications 264
8.5 Conclusion and Outlooks 267
References 267
Chapter 9: Functional Dendritic Polymer-Based Nanoscale Vehicles for Imaging-Guided Cancer Therapy 274
9.1 Introduction 275
9.2 Dendritic Architectures 277
9.3 Dendritic Polymer-Based Imaging Probes for Cancer Diagnosis 277
9.4 Dendritic Polymer-Based Drug Delivery Systems for Cancer Therapy 282
9.5 Dendritic Polymer-Based Nanosystems for Cancer Therapy Guided by Imaging 285
9.5.1 Near-Infrared-Based Dendritic Nanosystems 287
9.5.2 Dendritic Theranostic Nanosystems for Photodynamic Therapy 291
9.5.3 Magnetic Resonance Imaging-Based Dendritic Nanosystems 292
9.6 Conclusion 294
References 295
Chapter 10: Multifunctional Liposomes for Imaging-Guided Therapy 303
10.1 Introduction 304
10.2 Liposome Properties in Theranostic Design 305
10.2.1 Design of Passively Targeting Theranostic Liposomes 305
10.2.2 Design of Actively Targeting Theranostic Liposomes 307
10.3 MRI-Guided Drug Delivery Using Thermosensitive Liposomes and HIFU 309
10.3.1 Thermosensitive Liposomes 309
10.3.2 Temperature-Triggered Local Drug Delivery Using MRI-Guided HIFU 312
10.4 Radiolabeled Liposomes for Combining Imaging and Therapy 314
10.4.1 Nuclear Imaging Techniques 314
10.4.2 Labeling Liposomes with Radionuclide 316
10.4.3 Quality Control of Radiolabeled Liposomes 318
10.4.4 Liposomal Radiopharmaceuticals for Cancer Imaging and Therapy 319
10.5 Nanohybrid Liposomal Cerasome for Theranostics 321
10.5.1 Preparation and Properties of Cerasomes 321
10.5.2 Cerasomes as Drug/Gene Carriers 323
10.5.3 Loading Functional Nanoparticles into Cerasomes for Theranostics 326
10.5.4 Cerasomal Porphyrin for Photodynamic Theranostics of Cancer 329
10.6 Conclusions and Perspectives 331
References 332
Erscheint lt. Verlag | 15.12.2015 |
---|---|
Reihe/Serie | Springer Series in Biomaterials Science and Engineering | Springer Series in Biomaterials Science and Engineering |
Zusatzinfo | VIII, 336 p. 119 illus., 13 illus. in color. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Studium ► 1. Studienabschnitt (Vorklinik) ► Biochemie / Molekularbiologie |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Maschinenbau | |
Schlagworte | Cancer theranostics • Dendrimer-based nanodevices • gold nanostructures • Imaging guided cancer therapy • Multifunctional liposomes • Multifunctional quantum dot • Multimodal biomedical imaging • Upconvertion nanoparticles |
ISBN-10 | 3-662-48544-3 / 3662485443 |
ISBN-13 | 978-3-662-48544-6 / 9783662485446 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich