Sox2 -

Sox2 (eBook)

Biology and Role in Development and Disease
eBook Download: PDF | EPUB
2015 | 1. Auflage
344 Seiten
Elsevier Science (Verlag)
978-0-12-800420-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
108,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Sox2: Biology and Role in Development and Disease offers a thorough discussion of the important role of Sox2 in cellular and developmental processes, aimed at facilitating greater understanding of how Sox2 functions across different disciplines. The book discusses the basic biology of Sox2 to help establish the critical foundational knowledge necessary for deeper molecular and functional analysis. The book also provides insight into how the Sox2 transcription factor plays a key role in pluripotency induction, maintenance, and development.

Helpful as a tool to organize new research projects, the book assists with preparing lessons, seminars, and thesis or research papers, thereby circumventing the need to spend hours searching through journal databases. A single source for the basic biology of Sox2, Sox2: Biology and Its Role in Development and Disease provides information on networks, gene regulation, and regulatory function in a number of cell types and tissues types.


  • Discusses the important role of Sox2 in cellular and developmental processes
  • Facilitates a greater understanding of how Sox2 functions across different disciplines
  • Assists in identifying, circumventing and modifying the dynamics of Sox2 in cell types
  • Provides greater understanding of the structure of Sox2 and its gene networks
  • Identifies aspects of phenotypic spectrum uncovered following greater understanding of Sox2 during development

Sox2: Biology and Role in Development and Disease offers a thorough discussion of the important role of Sox2 in cellular and developmental processes, aimed at facilitating greater understanding of how Sox2 functions across different disciplines. The book discusses the basic biology of Sox2 to help establish the critical foundational knowledge necessary for deeper molecular and functional analysis. The book also provides insight into how the Sox2 transcription factor plays a key role in pluripotency induction, maintenance, and development. Helpful as a tool to organize new research projects, the book assists with preparing lessons, seminars, and thesis or research papers, thereby circumventing the need to spend hours searching through journal databases. A single source for the basic biology of Sox2, Sox2: Biology and Its Role in Development and Disease provides information on networks, gene regulation, and regulatory function in a number of cell types and tissues types. Discusses the important role of Sox2 in cellular and developmental processes Facilitates a greater understanding of how Sox2 functions across different disciplines Assists in identifying, circumventing and modifying the dynamics of Sox2 in cell types Provides greater understanding of the structure of Sox2 and its gene networks Identifies aspects of phenotypic spectrum uncovered following greater understanding of Sox2 during development

Chapter 1

Historical Perspectives


Hisato Kondoh1,  and Robin Lovell-Badge2     1Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan     2The Crick Institute, London, UK

Abstract


A quarter of century has passed since the discovery of the first Sox gene, SRY/Sry. Shortly afterward, many related Sox genes encoding SOX family transcription factors were identified. The importance of their role in development and diseases has attracted growing attention. Among the Sox transcription factor genes, the role of Sox2 has been highlighted mostly for its involvement in early developmental processes and organogenesis, and in particular for its central role in regulating a wide spectrum of stem cells. A historical overview is provided here concerning how molecular actions of SOX2 have been clarified to account for its participation in a wide range of biological processes.

Keywords


Chromatin regulation; Enhancers; Oncogenesis; Organogenesis; Partner factor interaction; Stem cells
 
A quarter of century has passed since the discovery of the first Sox gene, SRY/Sry. Shortly afterward, many related Sox genes encoding SOX family transcription factors were found to be distributed in the genome. The importance of their role in development and diseases has attracted growing attention. Among the Sox transcription factor genes, the role of Sox2 has been highlighted mostly for its involvement in early developmental processes and organogenesis, and in particular for its central role in regulating a wide spectrum of stem cells.
In the investigation of various transcription factors involved in the developmental process, SOX2 research has always been on the leading edge and has provided a paradigm of their action from molecular to organismal dimensions. Through scientific processes in which basic problems have been answered concomitantly with the rise of new questions, we are in the position to grasp an overall view of Sox2 and SOX2 functions across the dimensions. In this book, our current understanding is dismantled into individual dimensions for readers to synthesize them for their own study.
This chapter aims to familiarize readers with the history of SOX2 research over the past quarter century and highlights landmark findings and topics. We hope that readers will appreciate how the multifaceted functions Sox2 are derived from the unique basic features of the SOX2 molecule and from multilayered Sox2 regulation (Table 1).

Discovery of SOX2 and other Sox Genes Pioneered by Sry


The identification of SRY/Sry as a male-specifying gene marked a breakthrough not only in sex determination research but also in the area of genetic regulation of embryonic development (Gubbay et al., 1990; Sinclair et al., 1990). Shortly after this discovery, many genes sharing the High Mobility Group (HMG) box sequences similar to Sry were identified in the genome and were found to be expressed in embryos (Gubbay et al., 1990; Denny et al., 1992). These genes were named Sox (Sry-related HMG box) genes. Their HMG box sequences were similar to those of Lef/Tcf family transcription factors discovered around the same time, but Sox genes formed a clearly distinct gene group, as detailed in Chapter 6. The SOX proteins were characterized as deoxyribonucleic acid (DNA)-binding transcription factors because of their binding to (A)ACAA[A/T](G) sequences and their possession of activation or repression domains (Kamachi and Kondoh, 2013).

Table 1

Chronological table of Sox2 research

Discovery of Sry/SRY 1990 Gubbay et al. (1990) and Sinclair et al. (1990)
1991
Many Sox genes 1992 Denny et al. (1992)
1993
Tissue-specific expression of SoxB1 genes 1994
Identification of SOX2 regulatory targets: Requirement of partner factors; HMG–DNA complex structure 1995 Kamachi et al. (1995), Yuan et al. (1995), Werner et al. (1995), Uwanogho et al. (1995)
1996 Collignon et al. (1996)
First summary of Sox research 1997 Pevny and Lovell-Badge (1997)
Sox1 knockout mice 1998 Nishiguchi et al. (1998)
1999
Final classification of Sox genes; Sox2 in neural development 2000 Bowles et al. (2000) and Zappone et al. (2000)
SOX2–PAX6 interactions 2001 Kamachi et al. (2001)
2002
Sox2 knockout mice; Sox2 in neural stem cells; Identification of Sox2 enhancers; 3D structure of SOX2–partner–DNA ternary complex; Sox2-dependent congenital ocular diseases 2003 Avilion et al. (2003), Bylund et al. (2003), Graham et al. (2003), Uchikawa et al. (2003), Remenyi et al. (2003), Fantes et al. (2003)
Sox3 knockout mice 2004 Rizzoti et al. (2004)
Core regulatory circuits in human ES cells; SOX2 in inner ear development 2005 Boyer et al. (2005) and Kiernan et al. (2005)
iPS cells; Sox2 in retinal development 2006 Takahashi and Yamanaka (2006) and Taranova et al. (2006)
Sox2 in endoderm development 2007 Que et al. (2007)
Core regulatory circuits in mouse ES cells, and miRNAs 2008 Chen et al. (2008) and Tay et al. (2008)
2009 Xu et al. (2009)
Maternal Sox2 activity 2010 Keramari et al. (2010)
SOX2–CHD7 interaction; SOX2 as a pioneer factor; Sox2 in neuro-mesodermal bipotential precursors 2011 Engelen et al. (2011), Bergsland et al. (2011), Takemoto et al. (2011)
Sox2 in skin development 2012 Clavel et al. (2012)
2013
Sox2-positive cancer stem cells 2014 Vanner et al. (2014)
Remarkably, some Sox genes, in particular those with HMG box sequences closest to SRY, initially called a1 to a3 and now called Sox1, Sox2, and Sox3, respectively, and classified as SoxB1 genes (Bowles et al., 2000), were found to be expressed in a highly tissue-specific manner in mouse embryos. This strongly suggests their involvement in the regulation of cell and tissue differentiation processes (Collignon et al., 1996; Kamachi et al., 1998). A description of how these genes came to be named was provided by Lovell-Badge (2010). Expression data from the chicken version of Sox1 to Sox3 also emphasized the association of these genes with developmental processes (Uwanogho et al., 1995; Uchikawa et al., 1999).
In 1996, the Drosophila Dichaete gene (also called fish-hook), identified by mutants defective in embryonic processes, was found to code for a Sox gene (Nambu and Nambu, 1996; Russell et al., 1996) that is now classified as SoxB1 (Phochanukul and Russell, 2010). These observations clearly indicated that Sox2 and other Sox genes participate in developmental regulations not only in vertebrates but also in a wide range of animal species (Pevny and Lovell-Badge, 1997). Phylogenetic aspects of SoxB1 gene evolution are given in Chapter 6.

SOX2 with Defined Regulatory Targets, in Cooperation with Partner Factors


SOX2 was one of the transcription factors involved in the developmental processes whose regulatory target genes were identified earliest. Significant discoveries were made in 1995. Lisa Dailey and colleagues investigated fibroblast growth factor 4 (Fgf4) activation in teratocarcinoma (and later embryonic stem (ES)) cell lines and found that SOX2 and OCT3 (a synonym of OCT4 and renamed as POU5F1 by the Mouse Genome Informatics Consortium) cooperate in the activation of the Fgf4 enhancer bearing their juxtaposed binding sites (Yuan et al., 1995). We identified SOX2 as the major regulator of δ- and γ-crystallin genes specifically expressed in the lens (Kamachi et al.,...

Erscheint lt. Verlag 24.8.2015
Sprache englisch
Themenwelt Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-12-800420-7 / 0128004207
ISBN-13 978-0-12-800420-3 / 9780128004203
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 15,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DNA, RNA, Mutationen, Klonierung und Co. verstehen

von Tara Rodden Robinson; Lisa J. Spock

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
17,99