Lipid Oxidation -

Lipid Oxidation (eBook)

Challenges in Food Systems
eBook Download: PDF | EPUB
2015 | 1. Auflage
548 Seiten
Elsevier Science (Verlag)
978-0-9888565-1-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
180,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Lipid oxidation in food systems is one of the most important factors which affect food quality, nutrition, safety, color and consumers' acceptance. The control of lipid oxidation remains an ongoing challenge as most foods constitute very complex matrices. Lipids are mostly incorporated as emulsions, and chemical reactions occur at various interfaces throughout the food matrix. Recently, incorporation of healthy lipids into food systems to deliver the desired nutrients is becoming more popular in the food industry. Many food ingredients contain a vast array of components, many of them unknown or constituting diverse or undefined molecular structures making the need in the food industry to develop effective approaches to mitigate lipid oxidation in food systems. This book provides recent perspectives aimed at a better understanding of lipid oxidation mechanisms and strategies to improve the oxidative stability of food systems.
Lipid oxidation in food systems is one of the most important factors which affect food quality, nutrition, safety, color and consumers' acceptance. The control of lipid oxidation remains an ongoing challenge as most foods constitute very complex matrices. Lipids are mostly incorporated as emulsions, and chemical reactions occur at various interfaces throughout the food matrix. Recently, incorporation of healthy lipids into food systems to deliver the desired nutrients is becoming more popular in the food industry. Many food ingredients contain a vast array of components, many of them unknown or constituting diverse or undefined molecular structures making the need in the food industry to develop effective approaches to mitigate lipid oxidation in food systems. This book provides recent perspectives aimed at a better understanding of lipid oxidation mechanisms and strategies to improve the oxidative stability of food systems. Five chapters on naturally-derived antioxidants that focus on applications within food systems Contributors include an international group of leading researchers from academic, industrial, and governmental entities Discusses the oxidative stability of enzymatically produced oils and fats Provides overviews on the complexities of lipid oxidation mechanisms, and emulsion systems most suseptible to rapid lipid oxidation

CHAPTER 2

Challenges in Analyzing Lipid Oxidation


Are One Product and One Sample Concentration Enough?


K.M. Schaich1,     1Dept. of Food Science, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901-8520

Fundamental Requirements of Lipid Oxidation Analyses


Students learn about monitoring reactions in the context of straightforward reactions with fixed stable products that form in high concentrations; for example,

+B→C (2.1)

(2.1) or

+B→C+D (2.1a)

(2.1a)

This situation directly contrasts with lipid oxidation, which has multiple possible pathways that change with conditions and over time. In these reactions, products are actually intermediates that degrade or transform into other compounds, as shown in Fig. 1.2 of Chapter 1, and product yields are quite low; a total reaction of less than 1% renders foods inedible. Thus, lipid oxidation is generally considered to be the greatest analytical challenge in food science. Similar arguments could be made for cosmetics and many personal care products, as well as for biological tissues in which lipid oxidation and its effects are complex, even when total oxidation levels are low.

One question that persists in lipid oxidation analysis is which product is best to monitor? The answer is strongly influenced by the either quantitative or qualitative end goals of analyses. Industry rejects batches and makes decisions about formulations based on quantitation, which requires accuracy and reproducibility, and product class analysis (that is, for all hydroperoxides or all epoxides, regardless of structure) is usually adequate. In contrast, basic research seeks to elucidate reaction mechanisms, and oxidation sequences need as much quantitative and qualitative detail about individual products as possible. Oxygen consumption is often preferred for determining oxidation kinetics when starting from fresh products because it is independent of product transformation, but it cannot be used for spot analyses of products off the production line or storage shelf. For the latter, the question becomes, does one measure hydroperoxides because they form first (even though they decompose) or secondary products to detect hydroperoxide breakdown and because consumers can smell and taste them? Does a researcher analyze only volatiles because gas chromatographs are readily available, only non-volatile products because they remain in the product, or both? The picture of lipid oxidation that we construct depends on the analytical strategy used.

A wide variety of assays for various lipid oxidation products has been developed; many methods have been standardized, and more are used simply by following (and modifying) procedures published in research papers. Some of the most common assays for various lipid oxidation products are listed in Table 2.A. A number of excellent reviews and books have presented details of individual methods (McDonald & Mossoba, 1997; Shahidi, 1998; Dobarganes & Velasco, 2002; Yildiz et al., 2003; Kamal-Eldin & Pokorny, 2005). Therefore, it is not the goal of this chapter to provide protocols for analyses or to recommend specific assays. Rather, this chapter argues for new approaches and seeks to change how lipid oxidation analyses are viewed and used to attain more complete and accurate information. First and foremost, the author challenges readers to “think chemistry” in all lipid oxidation analyses, rather than seeing black boxes in which procedures are accepted and applied blindly; instead, they should look beyond peroxide values to track multiple products and attempt mass balance between products.

Table 2.A

Examples of Analytical Methods Used to Determine Oxidation in Lipids

Lipid Oxidation Product Standard Method Reference
Conjugated dienes AOCS Th 1a-64, Ti 1a-64 AOCS Ch 5-91 cyclohexane White, 1995; AOCS, 2011b, 2011c
  various other methods de Andrade et al., 2010 (review)
Hydroperoxides   Dobarganes & Velasco, 2002 (review)
Iodometric titration AOCS 8b-90, JOCS 2-4 12-71 isooctane JOCS, 2009; AOCS, 2011i
  AOCS Cd 8-53; IUPAC 2.501 CHCl3 IUPAC, 1992a; AOCS, 2011h
  AOAC 41.1.16 AOAC, 2000
Xylenol orange—direct   Jiang et al., 1990, 1991; Jiang et al., 1992; Wolff, 1994; Nourooz-Zadeh et al., 1995; Bou et al., 2008
Xylenol orange—PeroxySafe™ AOAC alternate method 030405 Osawa et al., 2007; Biomedicals, 2012
Xylenol orange—Pierce kit   Pierce, 2011
Ferrithiocyanate—direct IDF Standard Method 74A:1991 Shantha & Decker, 1994; Mihaljevic et al., 1996
Ferrithiocyanate—Cayman kit   Cayman, 2011
Triphenyl phosphine   Nakamura & Maeda, 1991; Akasaka & Ohrui, 2000; Talpur et al., 2010; Gotoh et al., 2011
Fourier transform infrared spectroscopy   Van de Vort et al., 1994; Sedman et al., 1997; Guillen and Cabo, 2002; Yu et al., 2007
NMR   Hamalainen & Kamal-Eldin, 2005
RP-HPLC—234 nm   Bauer-Plank & Steenhorst-Slikkerveer, 2000
post-column reaction   Yang, 1992
Alcohols (hydroxylated products) AOCS Cd 4-40, Cd 13-60, Tx 1a-66 AOCS, 2011d; 2011e; 2011f
GC-MS of TMS ether derivatives   Guido et al., 1993
Epoxides    
HBr titration AOCS Cd 9-57 Durbetaki, 1956; Maerker, 1965; AOCS, 2011g
4-(p-Nitrobenzyl)pyridine   Hammock et al., 1974; Agarwal et al., 1979
Diethyldithiocarbamate/HPLC   Dupard-Julien et al., 2007
Tetrafluorobenzenethiol/GC-MS   Newman & Hammock, 2001
NMR   Hamalainen & Kamal-Eldin, 2005
HPLC-MS   Sjovall et al., 2001
Fourier transform infrared spectroscopy   Patterson, 1954; Bomstein, 1958; George, 1975
Carbonyls (soluble)    
Dinitrophenylhydrazones—optical JOCS 2.5.4 White, 1995; JOCS, 1996
—HPLC   Seppanen & Csallany, 2001
—chemiluminescence   Townshend & Wheatley, 1998
Indole   Nagawade & Shinde, 2006
p-Anisidine—chemical AOCS Cd 18-90; IUPAC 2.504 IUPAC, 1987; White, 1995; AOCS, 2011a
FTIR   Dubois, 1996
Infrared spectroscopy   Moya Moreno et al., 1999; Mobaraki & Hemmateenejad, 2011
NMR   Haywood et al., 1995; Moya Moreno et al., 1999; Hamalainen & Kamal-Eldin, 2005
Volatile products—gas chromatography   Christie, 1989
Static headspace   Przybylski & Eskin, 1995
Volatile products—gas chromatography    
Solid phase microextraction...

Erscheint lt. Verlag 15.8.2015
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Chemie Analytische Chemie
Technik Lebensmitteltechnologie
ISBN-10 0-9888565-1-4 / 0988856514
ISBN-13 978-0-9888565-1-6 / 9780988856516
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 15,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
73,99