Markov Chain Aggregation for Agent-Based Models
Seiten
2016
|
1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-24875-2 (ISBN)
Springer International Publishing (Verlag)
978-3-319-24875-2 (ISBN)
This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting "micro-chain" including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the updating rule and governs the dynamics at a Markovian level, plays a crucial part in the analysis of "voter-like" models used in population genetics, evolutionary game theory and social dynamics. The book demonstrates that the problem of aggregation in ABMs - and the lumpability conditions in particular - can be embedded into a more general framework that employs information theory in order to identify different levels and relevant scales in complex dynamical systems
Introduction.- Background and Concepts.- Agent-based Models as Markov Chains.- The Voter Model with Homogeneous Mixing.- From Network Symmetries to Markov Projections.- Application to the Contrarian Voter Model.- Information-Theoretic Measures for the Non-Markovian Case.- Overlapping Versus Non-Overlapping Generations.- Aggretion and Emergence: A Synthesis.- Conclusion.
Erscheinungsdatum | 08.10.2016 |
---|---|
Reihe/Serie | Understanding Complex Systems |
Zusatzinfo | XIV, 195 p. 83 illus., 18 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | agent-based modelling • Complexity • Complex Systems • Contrarian Voter Model • Dynamics of Complex Systems • Lumpability and State-space Reduction • Markov Processes • Mathematical methods in physics • Microscopic Markov Chains • Nonlinear Dynamics • Physics and Astronomy • Scaling of Complex Dynamical Systems • Voter-like Models |
ISBN-10 | 3-319-24875-8 / 3319248758 |
ISBN-13 | 978-3-319-24875-2 / 9783319248752 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Springer Vieweg (Verlag)
44,99 €
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren
Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95 €