Mirjana Dalarsson is affiliated with the Research and Development program at Ericsson Corporation. She holds a Licentiate degree in Engineering Physics and has more than 25 years of research and teaching experience. Former affiliations in the academic and private sector include the Royal Institute of Technology, Belgrade University, Uppsala University, and ABB Corporation.
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in motion, relativistic addition of velocities, and the twin paradox, as well as new material on gravitational waves, amongst other topics. - Clearly combines relativity, astrophysics, and cosmology in a single volume- Extensive introductions to each section are followed by relevant examples and numerous exercises- Presents topics of interest to those researching and studying tensor calculus, the theory of relativity, gravitation, cosmology, quantum cosmology, Robertson-Walker Metrics, curvature tensors, kinematics, black holes, and more- Fully revised and updated with 80 pages of new material on relativistic effects, such as relativity of simultaneity and relativity of the concept of distance, amongst other topics- Provides an easy-to-understand approach to this advanced field of mathematics and modern physics by providing highly detailed derivations of all equations and results
Notation and Systems of Numbers
Abstract
In this chapter, we introduce the basic concepts and notation required for the subsequent study of tensor calculus. With some well-known concepts from linear algebra as a starting point, we define different systems of numbers and basic operations that can be performed on them. We study the symmetry properties of systems of numbers and introduce the concepts of symmetric and antisymmetric systems. Thereafter, we describe the Einstein summation convention and all the basic rules for its application in tensor calculus. Finally, we introduce the important concepts of unit symmetric systems (δ-symbols) and unit antisymmetric systems (e-symbols) with their main properties.
Keywords
Systems
Notation
Operations
Symmetry
Summation convention
δ-symbols
E-symbols
2.1 Introduction and Basic Concepts
In order to get acquainted with the basic notation and concepts of the tensor calculus, it is convenient to use some well-known concepts from linear algebra. The collection of N elements of a column matrix is often denoted by subscripts as x1,x2,…,xN. Using a lower index i = 1,2,…,N, we can introduce the following short-hand notation:
i(i=1,2,…,N).
(2.1)
Sometimes, the same collection of N elements is denoted by corresponding superscripts as x1,x2,…,xN. Using here an upper index i = 1,2,…,N, we can also introduce the following short-hand notation:
i(i=1,2,…,N).
(2.2)
In general the choice of a lower or an upper index to denote the collection of N elements of a column matrix is fully arbitrary. However, it will be shown later that in the tensor calculus lower and upper indices are used to denote mathematical objects of different natures. Therefore, both types of indices are essential for the development of tensor calculus as a mathematical discipline. In the definition (2.2) it should be noted that i is an upper index and not a power of x. Whenever there is a risk of confusion of an upper index and a power, such as when we want to write a square of xi, we will use parentheses as follows:
i⋅xi=(xi)2(i=1,2,…,N).
(2.3)
A collection of numbers, defined by just one (upper or lower) index, will be called a first-order system or a simple system. The individual elements of such a system will be called the elements or coordinates of the system. The introduction of the lower and upper indices provides a device to highlight the different nature of different first-order systems with the equal number of elements. Consider, for example, the following linear form:
x+by+cz.
(2.4)
Introducing the labels ai = {a,b,c} and xi = {x,y,z}, the expression (2.4) can be written as follows:
1x1+a2x2+a3x3=∑i=13aixi
(2.5)
indicating the different nature of the two first-order systems. In order to emphasize the advantage of the proposed notation, let us consider a bilinear form created using two first-order systems xi and yi(i = 1,2,3):
a11x1y1+a12x1y2+a13x1y3+a21x2y1+a22x2y2+a23x2y3+a31x3y1+a32x3y2+a33x3y3=∑i=13∑j=13aijxiyj.
(2.6)
Here, we see that the short-hand notation on the right-hand side of (2.6) is quite compact. The system of parameters of the bilinear form
ij(i,j=1,2,3)
(2.7)
is labeled by two lower indices. This system has nine elements and they can be represented by the following 3 × 3 square matrix:
11a12a13a21a22a23a31a32a33.
(2.8)
A system of quantities determined by two indices is called a second-order system.
Depending on whether the indices of a second-order system are upper or lower, there are three types of second-order systems:
ij,aij,aij(i,j=1,2,…,N).
(2.9)
A second-order system in N dimensions has N2 elements. In a similar way, we can define the third-order systems, which may be of one of the following four different types:
ijk,ajki,akij,aijk(i,j=1,2,…,N).
(2.10)
The most general system of order K is denoted by
i1,i2,…,iK(i1,i2,…,iK=1,2,…,N)
(2.11)
and depending on the position of the indices, it may be of one of several different types. The Kth-order system in N dimensions has NK elements.
2.2 Symmetric and Antisymmetric Systems
Let us consider a second-order system in three dimensions
ij(i,j=1,2,3).
(2.12)
The system (2.12) is called a symmetric system with respect to the two lower indices if the elements of the system satisfy the equality
ij=aji(i,j=1,2,3).
(2.13)
Similarly, the system (2.12) is called an antisymmetric system with respect to the two lower indices if the elements of the system satisfy the equality
ij=−aji(i,j=1,2,3).
(2.14)
The equality (2.14) indicates that an antisymmetric second-order system in three dimensions has only three independent components and that all the diagonal elements are equal to zero:
JJ=0(J=1,2,3).
(2.15)
Thus, it is possible to represent an antisymmetric second-order system in three dimensions by the following 3 × 3 matrix:
a12a13−a120a23−a13−a230.
(2.16)
In general, a system of an arbitrary order and type will be symmetric with respect to two of its indices (both upper or both lower), if the corresponding elements remain unchanged upon interchange of these two indices. The system will be totally symmetric with respect to all upper (lower) indices, if an interchange of any two upper (lower) indices leaves the corresponding system elements unchanged. Elements of a totally symmetric third-order system with all three lower indices satisfy the equality
ijk=aikj=ajki=ajik=akij=akji.
(2.17)
Analogous to the above, a system of an arbitrary order and type will be antisymmetric with respect to the two of the indices (both upper or both lower), if the corresponding elements change signs upon interchange of these two indices. The system will be totally antisymmetric with respect to all upper (lower) indices, if an interchange of any two upper (lower) indices changes signs of the corresponding system elements. Elements of a totally antisymmetric third-order system with all three lower indices satisfy the equality
ijk=−aikj=ajki=−ajik=akij=−akji.
(2.18)
2.3 Operations with Systems
Under certain conditions, it is possible to perform a number of algebraic operations with systems. The definition of these operations depends on the order and type of the systems.
2.3.1 Addition and Subtraction of Systems
The addition and subtraction of systems can be performed only with the systems of the same order and same type. The addition (subtraction) of systems is performed in such a way that each element of one system is added (subtracted) to (from) the corresponding element of the other system (the one with the same indices in the same order). For example, the systems kmij and kmij can be added since they are of the same order and of the same type. The sum of these two systems is given by
kmij=Akmij+Bkmij,
(2.19)
and it is the system of the same order and type as the two original systems. This definition is easily extended to addition and subtraction of an arbitrary number of systems.
2.3.2 Direct Product of Systems
A system obtained by multiplying each element of one system by each element of another system, regardless of their order and type, is called a direct product or just a product of these two systems. Thus, for example, a product of two first-order systems ai and bi is a second-order system
ij=aibj.
(2.20)
For i,j = 1,2,3 this operation can be written in the following matrix form:...
Erscheint lt. Verlag | 8.7.2015 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik |
Naturwissenschaften ► Physik / Astronomie ► Relativitätstheorie | |
Technik ► Luft- / Raumfahrttechnik | |
ISBN-10 | 0-12-803401-7 / 0128034017 |
ISBN-13 | 978-0-12-803401-9 / 9780128034019 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 5,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich