Developments in Turbomachinery Flow -  Ghasem Akbari,  Mostafa Mahmoodi,  Nader Montazerin

Developments in Turbomachinery Flow (eBook)

Forward Curved Centrifugal Fans
eBook Download: PDF | EPUB
2015 | 1. Auflage
154 Seiten
Elsevier Science (Verlag)
978-1-78242-193-1 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
148,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Developments in Turbomachinery Flow: Forward Curved Centrifugal Fans explores the forward curved squirrel cage fan as an excellent instrument for fluid mechanics research in turbomachines. The book explores phenomena such as jet/wake interaction, circulation, separation and noise in turbomachines, also addressing the characteristics that are specific to this fan and applications in other centrifugal turbomachines. Chapters begin with a general introduction that includes research techniques and a survey of older research, and then proceed into a detailed description of improvements for different parts of the fan, including the inlet, the rotor and the volute. Final sections include a comprehensive discussion on geometrical modifications that could improve performance without impacting cost. - Explores how forward curved centrifugal fans have wide industrial application - Discusses the strong trade-off between fan aerodynamics and construction cost - Provides a wide selection of optimums for geometrical configuration - Introduces new geometries that can improve performance and reduce noise for the same construction cost - Presents fluid phenomena as a potential research field for this fan

Nader Montazerin is a professor in the department of mechanical engineering, Amirkabir University of Technology, Tehran, Iran
Developments in Turbomachinery Flow: Forward Curved Centrifugal Fans explores the forward curved squirrel cage fan as an excellent instrument for fluid mechanics research in turbomachines. The book explores phenomena such as jet/wake interaction, circulation, separation and noise in turbomachines, also addressing the characteristics that are specific to this fan and applications in other centrifugal turbomachines. Chapters begin with a general introduction that includes research techniques and a survey of older research, and then proceed into a detailed description of improvements for different parts of the fan, including the inlet, the rotor and the volute. Final sections include a comprehensive discussion on geometrical modifications that could improve performance without impacting cost. - Explores how forward curved centrifugal fans have wide industrial application- Discusses the strong trade-off between fan aerodynamics and construction cost- Provides a wide selection of optimums for geometrical configuration- Introduces new geometries that can improve performance and reduce noise for the same construction cost- Presents fluid phenomena as a potential research field for this fan

List of figures


Figure 1.1 Geometry of a squirrel-cage fan: (a) three-dimensional geometry of the assembled fan; (b) three-dimensional geometry of the main parts of the fan; (c) two-dimensional views of the fan including the assigned notations in this book. 3
Figure 1.2 Representation of different types of turbomachines on the Cordier diagram. 4
Figure 1.3 Interactive region of flow behind the inlet. 5
Figure 1.4 Characteristics curves of a forward-curved centrifugal fan with cylindrical rotor. 7
Figure 1.5 An experimental setup for noise measurement in centrifugal fan with ducted outlet. 8
Figure 1.6 Comparison of performance of a squirrel-cage fan obtained by experiment and different Reynolds-averaged Navier–Stokes models. 10
Figure 1.7 General configuration of the fan for numerical simulation. 14
Figure 1.8 Sketch of the mesh: (a) on the walls of the considered geometry in numerical simulation; (b) on the rotor blades. 15
Figure 1.9 The measurement volume on the intersection of two laser beams; the fringes are shown by horizontal lines. 18
Figure 1.10 Schematic of a PIV setup that consists of a laser light generator, a laser guide/convertor system, a camera and seeding particles. 18
Figure 2.1 Different squirrel-cage fan inlets: (a) outward inlet; (b) inward inlet; (c) annular inlet. 26
Figure 2.2 Maximum fan flow rate versus nondimensional gap spacing between the rotor and the inlet. 27
Figure 2.3 Geometry of blade tips for a shroud-less rotor. 28
Figure 2.4 Characteristic curves for inward, outward and flat inlets. 29
Figure 2.5 Nondimensional velocity for different normalized flow rates outside the rotor at nondimensional radius 1.09 at (a) 180°; (b) 270°; and (c) 360°. The terms ‘in’ and ‘out’ correspond to inward and outward inlets, respectively. 30
Figure 2.6 Radial and tangential components of the normalized velocity out of the rotor at θ = 270° for (a) inward inlet and (b) outward inlet. 31
Figure 2.7 Absolute and relative velocity angles out of the rotor of fans with inward and outward inlets at (a) θ = 180°; (b) θ = 270°; and (c) θ = 360°. 32
Figure 3.1 Geometry of different types of rotor: (a) cylindrical rotor (α = 0); (b) positive half-cone rotor (α > 0); and (c) negative half-cone rotor (α < 0). The inlet flow is shown by arrows. 35
Figure 3.2 Comparison of fan performance characteristics for different rotor geometries: (a) pressure coefficient and (b) efficiency. 36
Figure 3.3 General pattern of the flow in the meridional plane of fan. The axial and radial distances are measured relative to the volute backplate and the rotor axis, respectively. 37
Figure 3.4 Static pressure inside (at r/r0 = 0.65) and outside (at r/r0 = 1.17) of the rotor at θ = 0°. Measurements are for different conical angles: (a) α = +10°; (b) α = +5°; (c) α = 0° (cylindrical rotor); (d) α = 5°; and (e) α = 10°. 38
Figure 3.5 Location of the centre of vortex for different rotors at angular sections 180°, 270° and 360°. 39
Figure 3.6 Radial normalized velocity out of the cylindrical rotor at r/r0 = 1.17 for different axial locations. 39
Figure 3.7 Axial variation of the radial velocity component for different rotor geometries at (a) θ = 25° and (b) θ = 270°. 39
Figure 3.8 Axial variation of the tangential velocity component for different rotor geometries at (a) θ = 25° and (b) θ = 270°. 40
Figure 3.9 Experimental performance characteristics of half-cone rotors with different angles: (a) pressure coefficient versus flow coefficient and (b) efficiency versus flow coefficient. 41
Figure 3.10 Axial variation of radial and circumferential velocity components in r/r0 = 1.17 for three different rotors and two measurement sections: (a) θ = 270° and (b) θ = 360°. 43
Figure 3.11 Radial velocity component in exit region of a +10° half-cone rotor at various circumferential locations. Measurements are at r/r0 = 1.17 and z/B = 0.3. 44
Figure 3.12 Radial component of normalized velocity in conical rotors for operating points D and E at r/r0 = 1.0 and r/r0 = 1.17. (a) Measurement at section θ = 270°; (b) measurement at section θ = 360°; and (c) repetition of curves for +10° half-cone rotor and similarity of radial velocity profile for r/r0 = 1.0 at θ = 270° and r/r0 = 1.17 at θ = 360°. 46
Figure 3.13 Circumferential component of normalized velocity in the conical rotors at r/r0 = 1.0 and r/r0 = 1.17. Measurements are at sections (a) θ = 270° and (b) θ = 360°. 47
Figure 3.14 Axial variation of normalized velocity components (radial and circumferential) at r/r0 = 1.17 and Φ = 0.55 for three different rotors. Letters B, C and F in the legend indicate the operating condition points. Measurements are at sections: (a) θ = 270° and (b) θ = 360°. 48
Figure 3.15 Axial variation of normalized velocity components (radial and circumferential) at two different operating conditions for cylindrical rotor. Measurements are at (a) θ = 270° and (b) θ = 360°. 50
Figure 3.16 Axial variation of normalized velocity components (radial and circumferential) at two different operating conditions for the 10° half-cone rotor. Measurements are at (a) θ = 270° and (b) θ = 360°. 50
Figure 3.17 Cylindrical rotors with different blade alignment: (a) a rotor without lean angle; (b) a rotor with positive lean angle; and (c) a rotor with negative lean angle. 51
Figure 3.18 Prediction of change in efficiency with lean angle of blades for cylindrical and half-cone rotors. 52
Figure 3.19 Reference diameter for a cylindrical rotor and its corresponding half-cone...

Erscheint lt. Verlag 2.7.2015
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Strömungsmechanik
Technik Bauwesen
Technik Maschinenbau
ISBN-10 1-78242-193-9 / 1782421939
ISBN-13 978-1-78242-193-1 / 9781782421931
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 13,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 12,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Heinz Schade; Ewald Kunz; Frank Kameier …

eBook Download (2022)
De Gruyter (Verlag)
74,95
A Practical Approach

von Chaoqun LIU; Yao Tao; Jiyuan Tu; Guan Heng Yeoh

eBook Download (2023)
Elsevier Science (Verlag)
70,99

von Jesse Capecelatro; Ira M. Cohen; David R Dowling …

eBook Download (2024)
Elsevier Science (Verlag)
113,00