Laboratory Methods in Enzymology: Protein Part D -

Laboratory Methods in Enzymology: Protein Part D (eBook)

Laboratory Methods in Enzymology

Jon Lorsch (Herausgeber)

eBook Download: PDF | EPUB
2015 | 1. Auflage
160 Seiten
Elsevier Science (Verlag)
978-0-12-800335-0 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
142,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 520 volumes and 40,000 chapters in the collection, much of the material is still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research, and genetics, just to name a few.

In this volume, number 545, we have brought together a number of core protocols concentrating on protein, carefully written and edited by experts.


  • Indispensable tool for the researcher
  • Carefully written and edited by experts to contain step-by-step protocols
  • Brings together a number of core protocols concentrating on protein

The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 520 volumes and 40,000 chapters in the collection, much of the material is still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research, and genetics, just to name a few. In this volume, number 545, we have brought together a number of core protocols concentrating on protein, carefully written and edited by experts. Indispensable tool for the researcher Carefully written and edited by experts to contain step-by-step protocols Brings together a number of core protocols concentrating on protein

Chapter One

Purification of His-Tagged Proteins


Anne Spriestersbach; Jan Kubicek; Frank Schäfer1; Helena Block; Barbara Maertens    QIAGEN GmbH, Research and Development, Qiagenstrasse 1, 40724 Hilden, Germany
1 Corresponding author: email address: frank.schaefer@qiagen.com

Abstract


Ni-NTA affinity purification of His-tagged proteins is a bind-wash-elute procedure that can be performed under native or denaturing conditions. Here, protocols for purification of His-tagged proteins under native, as well as under denaturing conditions, are given. The choice whether to purify the target protein under native or denaturing conditions depends on protein location and solubility, the accessibility of the His tag, and the desired downstream application. His-tagged proteins can be purified by a single-step affinity chromatography, namely immobilized metal ion affinity chromatography (IMAC), which is commercially available in different kinds of formats, Ni-NTA matrices being the most widely used. The provided protocols describe protein purification in the batch binding mode and apply gravity-assisted flow in disposable columns; this procedure is simple to conduct and extremely robust. IMAC purification can equally be performed in prepacked columns using FPLC or other liquid chromatography instrumentation, or using magnetic bead-based methods (Block et al., 2009).

Keywords

Batch purification

Denaturing conditions

E. coli lysate

His-tagged proteins

IMAC

Ni-NTA

1 Theory


The purification of recombinant proteins is a prerequisite for a lot of downstream applications such as functional and structural studies. Recombinant proteins are commonly expressed with an affinity tag fused to the N- or C-terminus to facilitate purification and detection. One of the most commonly used fusion tags for recombinant protein expression and purification is the His tag, which contains six or more consecutive histidine residues (Waugh, 2005). Due to its small size (0.84 kDa in the case of a hexahistidine tag) and the fact that it is uncharged at physiological pH, the His tag does usually not affect folding and in most cases does not interfere with the structure or function of the fusion protein (Carson et al., 2007). It has a very low immunogenicity and it is compatible with most downstream applications.

Purification of His-tagged proteins by IMAC is based on the affinity of histidine residues for immobilized metal ions (e.g., Ni2+ or Cu2+). The metal ions are immobilized on chromatographic matrices by a chelating ligand, most commonly nitrilotriacetic acid (NTA) or iminodiacetic acid (IDA). While IDA has only three metal-chelating sites, NTA contains four and hence binds the metal ions more stably resulting in reduced ion leaching (Hochuli, 1989; Block et al., 2009). Elution conditions for IMAC of His-tagged proteins are mild and flexible (100–500 mM imidazole, pH 5.9–4.5, or EDTA).

Since the affinity of the His tag toward the Ni-NTA depends only on its primary structure, His-tagged proteins can be purified under native or denaturing conditions (Hochuli et al., 1987). While many recombinant proteins can be produced in a soluble form in E. coli, a lot of other proteins aggregate to insoluble inclusion bodies when expressed at high levels and can be efficiently purified only using denaturing purification conditions. Strong denaturants such as 8 M urea or 6 M guanidinium hydrochloride are usually used to dissolve protein aggregates for IMAC purification. Generally, the binding of His-tagged proteins to the Ni-NTA matrix improves under denaturing conditions since the His tag is fully exposed and the potential of untagged proteins to co-purify is decreased.

Generally, the level of co-purifying contaminants is higher for samples from eukaryotic expression systems, because of the higher abundance of endogenous proteins containing consecutive histidines or metal-binding motifs. In many instances, contaminants that co-purify can be removed using more stringent binding and washing conditions, for example, increasing imidazole concentration, increasing the salt concentration up to 2 M NaCl, or the addition of low concentrations of detergent (for more information on detergents see Explanatory Chapter: Choosing the right detergent). However, a parameter with a very high impact on the purity of the protein preparation is the ratio of Ni-NTA resin to His-tagged protein. To prevent co-purification of untagged proteins with a certain affinity to Ni-NTA, the binding capacity of the resin should be adjusted to the amount of His-tagged protein in the sample (Structural Genomics Consortium, 2008).

Due to the relatively high affinity and specificity of the His-tag, a single IMAC purification step in most cases results in an efficient purification with a reasonably high purity of the target protein preparation, which is sufficient for many applications. However, in some cases optimization of the purification process is required, especially if poorly expressed proteins are to be purified. In this regard, it has been recently reported that purification yields of very low abundance His-tagged proteins from E. coli lysates can be greatly increased by the removal of the periplasmic material prior to cell lysis (Magnusdottir et al., 2009). Alternative approaches to increasing purity include the use of two affinity tags in a double-tag purification procedure (Cass et al., 2005) or the combination of His-tag removal with a reverse IMAC purification step (Block et al., 2008; see Proteolytic affinity tag cleavage).

Although recombinant His-tagged proteins can be expressed and purified from various expression systems, the following protocols focus on the purification of proteins from E. coli as it is the most widely used expression system. The amounts given in the following protocols usually give good results for the purification of His-tagged proteins showing an expression level of 10–50 mg per liter culture volume. However, due to the scalability of the purification procedure, the protocols can be readily scaled up or down depending on the required amount of target protein and the individual expression level of the His-tagged protein. Moreover, the protocols can be easily adapted to other protein expression systems by adjusting the amount of processed culture volume and the cell lysis method (e.g., replacing lysozyme with 1% Igepal CA-630 for insect and mammalian cells. For an example of a lysis protocol, see Lysis of mammalian and Sf9 cells).

Since it is difficult to provide a general protocol for optimal purification for any His-tagged protein, the protocols provided should be used as guidelines and might need to be optimized for a specific target. The buffers given in the protocols can be supplemented to suit the specific requirements of a protein (for an overview see Block et al., 2009), for example, to stabilize a protein by addition of glycerol, to generate reducing conditions or by providing cofactors. However, due to the incompatibility with Ni-NTA resins, strong chelators such as EDTA can be used only in low concentrations and also strong denaturants (e.g., DTT) and ionic detergents (e.g., SDS) are compatible with IMAC only to a certain extent.

2 Equipment


Refrigerated centrifuge

End-over-end shaker

Disposable gravity flow columns

Micropipettors

Pipettes

Pipettor tips

15-ml conical polypropylene centrifuge tubes

1.5-ml microcentrifuge tubes

3 Materials


Sodium phosphate monobasic (NaH2PO4)

Sodium chloride (NaCl)

Imidazole

Sodium hydroxide (NaOH)

Tris base

Urea

Hydrochloric acid (HCl)

Lysozyme (e.g., Roche, Cat. # 10837059001)

Protease inhibitor cocktail without EDTA (e.g., Roche, Complete, EDTA-free, Cat. # 11836170001)

Benzonase (Novagen, Cat. # 70664) (or RNase A and DNase I)

IMAC resin (e.g., Ni-NTA Agarose, QIAGEN, Cat. # 30210, or Ni Sepharose HP, GE Healthcare, Cat. # 17-5318-01)

3.1 Solutions & buffers


Step 1a

Basis Buffer NPI-10

NaH2PO4 50 mM 1 M 50 ml
NaCl 300 mM 1 M 300 ml
Imidazole 10 mM 1 M 10 ml

Mix in 550 ml water. Adjust the pH to 8.0 using NaOH. Add water to 1 l

Step 2a

Wash Buffer NPI-20

NaH2PO4 50 mM 1 M 50 ml
NaCl 300 mM 1 M 300 ml
Imidazole 20 mM 1 M 20 ml

Mix in 550 ml water. Adjust the pH to 8.0 using NaOH. Add water to...

Erscheint lt. Verlag 18.6.2015
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
ISBN-10 0-12-800335-9 / 0128003359
ISBN-13 978-0-12-800335-0 / 9780128003350
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 7,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 7,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99