The Prefrontal Cortex -  Joaquin Fuster

The Prefrontal Cortex (eBook)

Prefrontal Cortex
eBook Download: PDF | EPUB
2015 | 5. Auflage
460 Seiten
Elsevier Reference Monographs (Verlag)
978-0-12-408060-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
89,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Prefrontal Cortex, Fifth Edition, provides users with a thoroughly updated version of this comprehensive work that has historically served as the classic reference on this part of the brain. The book offers a unifying, interdisciplinary perspective that is lacking in other volumes written about the frontal lobes, and is, once again, written by the award-winning author who discovered 'memory cells,' the physiological substrate of working memory. The fifth edition constitutes a comprehensive update, including all the major advances made on the physiology and cognitive neuroscience of the region since publication in 2008. All chapters have been fully revised, and the overview of prefrontal functions now interprets experimental data within the theoretical framework of the new paradigm of cortical structure and dynamics (the Cognit Paradigm), addressing the accompanying social, economic, and cultural implications. - Provides a distinctly interdisciplinary view of the prefrontal cortex, covering all major methodologies, from comparative anatomy to modern imaging - Unique analysis and synthesis of a large body of basic and clinical data on the subject (more than 2000 references) - Written by an award-winning author who discovered 'memory cells,' the physiological substrate of working memory - Synthesizes evidence that the prefrontal cortex constitutes a complex pre-adaptive system - Incorporates emerging study of the role of the frontal lobes in social, economic, and cultural adaptation

Dr. Joaquin M. Fuster was born in Barcelona, Spain, in 1930. Studied medicine at the University of Barcelona. In Barcelona and Innsbruck (Austria), he specialized in psychiatry. In 1957 Fuster emigrated to the United States for a career in neuroscience at the University of California, Los Angeles (UCLA). In 1962-64, he worked as a visiting scientist at the Max-Planck Institute for Psychiatry in Munich. He received his PhD. in neuroscience at the University of Granada, Spain. Dr. Fuster is Professor Emeritus of Psychiatry and a member of the Brain Research Institute and the Semel Institute for Neuroscience and Human Behavior at the UCLA's School of Medicine. Dr. Fuster's major honors and awards include: the title of Member of Honor of the Spanish Royal Academy of Medicine (1997); Signoret Prize (Universit‚ de La Sorbonne, Paris) (2000); Fyssen International Science Prize (2000); Doctor Honoris Causa, Universidad Miguel Hern ndez, Alicante, Spain (2003); Goldman-Rakic Prize for Cognitive Neuroscience (NARSAD) (2006); George Miller Prize of the Cognitive Neuroscience Society (2006); Doctor Honoris Causa, Universidad Aut¢noma de Madrid (2008); Geschwind Lecturer, Harvard University (2009); Woolsey Lecturer, University of Wisconsin (2010); Elected Member, American Academy of Arts and Sciences (2010); Segerfalk Lecturer, University of Lund, Sweden (2010); Doctor Honoris Causa, Universidad Francisco Marroqu¡n, Guatemala (2014). Dr. Fuster is the author of more than 200 articles and 8 books.

Chapter 2

Anatomy of the Prefrontal Cortex


The prefrontal cortex is among the last regions of the brain to develop, in evolution and in individual maturation. In the human, it constitutes nearly one-third of the totality of the neocortex. The most recent prefrontal cortex (pole and lateral convexity of the frontal lobe) is layered and granular, with a distinct layer IV which is heavily populated by granular cells. The more primitive, phylogenetically earlier, ventral and medial prefrontal cortex is dysgranular, poorly layered, and structurally and functionally akin to limbic cortex. Anatomically defined by its connectivity with the nucleus medialis dorsalis of the thalamus, the prefrontal cortex is the best connected of all neocortical regions. It is reciprocally connected, directly or indirectly, with the posterior association cortex, thalamus, hypothalamus, amygdala, basal ganglia, insula, hippocampus, cerebellum, and brainstem.

Keywords


afferent; comparative anatomy; connectivity; development; dorsolateral cortex; efferent; evolution; thalamus; ventromedial cortex

Outline

I Introduction


This chapter is devoted to the anatomy and developmental neurobiology of the prefrontal cortex. It begins with the discussion of issues related to the phylogenetic development and comparative anatomy of the neocortex of the frontal lobe. After that, the chapter deals with its ontogenetic development. Then, the chapter deals with the anatomy and microscopic architecture of the prefrontal cortex in the adult organism, and with the morphological changes it undergoes as a result of aging. Finally, the chapter provides an overview of the afferent and efferent connections of the prefrontal cortex in several species. This overview of connectivity of the prefrontal cortex, which is arguably the most richly connected of all cortical regions, opens the way to subsequent chapters, where connectivity is found to be the key to all its functions.

II Evolution and Comparative Anatomy


The prefrontal cortex increases in relative size with phylogenetic development. This can be inferred from the study of existent animals’ brains as well as from paleoneurological data (Papez, 1929; Grünthal, 1948; Ariëns Kappers et al., 1960; Poliakov, 1966b; Radinsky, 1969). It is most apparent in the primate order, where the cortical sector named by Brodmann (1909, 1912) the “regio frontalis,” which approximately corresponds to what we call the prefrontal cortex, constitutes, by his calculations based on cytoarchitectonics, 29% of the total cortex in humans, 17% in the chimpanzee, 11.5% in the gibbon and the macaque, and 8.5% in the lemur (Brodmann, 1912). For the dog and the cat, the figures are, respectively, 7% and 3.5%.

The use of values such as those to estimate differences in evolutionary growth has pitfalls and limitations, however (Passingham, 1973). The old notion that the entirety of the frontal lobe is relatively larger in humans than in other primates has been challenged by the results of brain imaging in several primate species (Semendeferi, 2001). Furthermore, by calculating the volume of the prefrontal cortex and plotting it against the total volume of the brain (in rat, marmoset, macaque, orangutan, and human), some authors have come up with a linear relationship, thus belying the volumetric prefrontal advantage of the human (Uylings and Van Eden, 1990). Others, however, have utilized sound empirical reasons to argue that in the course of evolution the prefrontal region per se, strictly defined cytoarchitectonically, grows more than other cortical regions (review by Preuss, 2000). No one has persuasively denied that in the human, as Brodmann showed, the prefrontal cortex attains the greatest magnitude in comparison with those other regions. That greater relative magnitude of the human prefrontal cortex presumably indicates that this cortex is the substrate for cognitive functions of the highest order, which, as a result of phylogenetic differentiation, have become a distinctive part of the evolutionary patrimony of our species. It has even been proposed that certain cortical areas, such as Broca’s area – which is arguably prefrontal – have developed by natural selection with the development of language, a distinctly human function (Aboitiz and García, 1997).

It is always difficult to draw evolutionary conclusions from neuroanatomical comparisons between contemporaneous species in the absence of common ancestors (Hodos, 1970; Campbell, 1975). Such comparisons commonly fail to establish the homology of brain structures (Campbell and Hodos, 1970), and this is a particularly vexing problem when dealing with cortical areas. Ordinarily, for lack of more reliable guidelines, the neuroanatomist uses structural criteria to determine cortical homology. The principal criteria for defining the prefrontal cortex and for establishing its homology across species are topology, topography, architecture, and fiber connections (hodology). The same criteria have been utilized in attempts to elucidate its evolutionary development.

The neocortex of mammals has emerged and developed between two ancient structures that constitute most of the pallium in non-mammalian vertebrates: the hippocampus and the piriform area or lobe (Figure 2.1). The process is part of what has been generally characterized as the evolutionary “neocorticalization” of the brain (Jerison, 1994). What in the brain of the reptile is a sheet of simple cortex-like structure bridging those two structures is replaced and outgrown by the multilayered neocortex of the mammalian brain (Crosby, 1917; Elliott Smith, 1919; Kuhlenbeck, 1927, 1929; Ariëns Kappers et al., 1960; Nauta and Karten, 1970; Aboitiz et al., 2003). Because the growth of the newer cortex takes place in the dorsal aspect of the cerebral hemisphere, the evolutionary process has been characterized as one of “dorsalization” of pallial development. Strictly speaking, however, it is inaccurate to consider the reptile’s general cortex as the homologous precursor of the mammalian neocortex (Kruger and Berkowitz, 1960). Moreover, there are other plausible alternate theories of neocortical evolution in addition to the above (Northcutt and Kaas, 1995; Butler and Molnar, 2002). In any case, it appears that the mammalian neocortex is phylogenetically preceded by certain homologous subcortical nuclei in the brains of reptiles and birds.


Figure 2.1 Phylogenetic development of the cortex in several species. (A) Parasagittal brain sections in four vertebrate classes. Abbreviation: P, pallium, generic term for both paleocortex and neocortex. (From Creutzfeldt, 1993, after Eddinger, modified.) (B) Coronal sections of amphibian Necturus, tortoise, opossum, and human. (From Herrick, 1956, modified.)

Studies of cortical architecture in aplacental mammals, such as those by Abbie (1940, 1942), have been helpful to trace neocortical development. They reveal that the neocortex is made of two separate components or moieties, one adjoining the hippocampus and the other the piriform area, that develop in opposite directions around the hemisphere and meet on its lateral aspect. Both undergo progressive differentiation, which consists of cortical thickening, sharpening of lamination, and, ultimately, emergence of granular cells. In higher mammals the two primordial structures, the hippocampus and the piriform lobe, have been outflanked, pushed against each other, and buried in ventromedial locations by the vastly expanded cortex (Sanides, 1964, 1970). Around the rostral pole of the hemisphere, the two phylogenetically differentiated moieties form the prefrontal neopallium.

The external morphology of the frontal region varies so much from species to species that it is difficult to ascertain the homology of its landmarks. Within a given order of mammals, certain sulci can be identified as homologous and used as a guide for understanding cortical evolution; across orders, however, all comparisons are hazardous. Nevertheless, some general principles of prefrontal evolution seem sustainable. One such principle is that, like the rest of the neopallium, the frontal cortex becomes not only larger but also more complex, more fissurated and convoluted, as mammalian species evolve. In primates, the process reaches its culmination with the human brain.

We should note, however, that the phyletic increase in gyrification and fissuration can be attributable to mechanical factors and not only to such factors as functional differentiation. The cortex folds and thus gains surface, keeping up with the three-dimensional expansion of subcortical masses (Bok, 1959). Thus, the overall number of gyri and sulci that form with evolution is largely a function of brain size, as stated by the law of Baillarger–Dareste (Ariëns Kappers et al.,...

Erscheint lt. Verlag 22.5.2015
Sprache englisch
Themenwelt Geisteswissenschaften Psychologie Verhaltenstherapie
Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-12-408060-X / 012408060X
ISBN-13 978-0-12-408060-7 / 9780124080607
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 21,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 7,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99