China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II (eBook)

eBook Download: PDF
2015 | 2015
XVIII, 623 Seiten
Springer Berlin (Verlag)
978-3-662-46635-3 (ISBN)

Lese- und Medienproben

China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II -
Systemvoraussetzungen
309,23 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

China Satellite Navigation Conference (CSNC) 2015 Proceedings presents selected research papers from CSNC2015, held during 13th-15th May in Xian, China. The theme of CSNC2015 is Opening-up, Connectivity and Win-win. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2015, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

SUN Jiadong is the Chief Designer of the Compass/ BDS, and the academician of Chinese Academy of Sciences (CAS); LIU Jingnan is a professor at Wuhan University. FAN Shiwei is a researcher at China Satellite Navigation Office; LU Xiaochun is an academician of Chinese Academy of Sciences (CAS).

Editorial Board 6
Preface 8
The 6th China Satellite NavigationConference (CSNC 2015) 10
Contents 13
Part I Satellite Navigation Signal System,Compatibility and Interoperability 19
1 Optimization Selection of the HRC Correlator Spacing for Different Navigation Signals 20
Abstract 20
1.1 Introduction 21
1.2 Code Tracking of Satellite Navigation Signals and HRC 21
1.2.1 Code Tracking of Navigation Signals 21
1.2.2 HRC Discriminator 22
1.3 Characteristics of Different Navigation Signals and the Derivation of HRC 23
1.4 Curve of HRC Discrimination and the Simulation of Multipath Mitigation 25
1.4.1 Curve of HRC Discrimination 25
1.4.2 Simulation of HRC for Different Kinds of Navigation Signals 27
1.5 Conclusions 29
Acknowledgments 29
References 29
2 The Key Questions Discussing of the Inter-Satellite Link (ISL) Signal Design Based on Earth-Moon System 31
Abstract 31
2.1 Introduction 31
2.2 Analysis of Inter Satellite Link Characteristics 32
2.3 Design of Inter Satellite Link Signal 33
2.3.1 Frequency Selection 33
2.3.2 Modulation Mode Selection 35
2.3.3 Coding Mode Selection 35
2.3.4 Link Budget 36
2.4 Analysis of Near-Far Effect 38
2.5 Conclusion 40
References 41
3 Application Study of a Phase-Optimized Constant-Envelope Transmission (POCET) Optimization Algorithm for BDS B1 Signal 42
Abstract 42
3.1 Introduction 43
3.2 POCET Algorithm 43
3.2.1 Theory of POCET 43
3.2.2 Constrained Optimization Algorithm 44
3.3 Multiplex Design for B1 Signals 45
3.3.1 Smooth Transition for B1 Signals 45
3.3.2 POCET Phase Solution 45
3.3.2.1 Multiplex of Four B1 OS Signals 45
3.3.2.2 Multiplex of Three B1 AS Signals 45
3.4 Simulation and Analysis in Band-Limited System 46
3.4.1 Baseband Equivalent Model 48
3.4.2 Analysis of Multiplex Performance 48
3.5 Conclusions 50
References 50
4 Nonlinear Equalization with Symbol Error Aided in Beidou Satellite Navigation Communication System 52
Abstract 52
4.1 Introduction 52
4.2 System Model 54
4.3 Blind Equalization Algorithm 55
4.4 Nonlinear Error Revised Model 55
4.5 Simulation and Analysis 57
4.5.1 Symbol Error Ratio 57
4.5.2 Convergence Speed 59
4.6 Conclusions 60
References 60
5 GCE-BOC Modulation: A Generalized Multiplexing Technology for Modern GNSS Dual-Frequency Signals 61
Abstract 61
5.1 Introduction 61
5.2 GCE-BOC Modulation 62
5.3 Application for B1 Band 64
5.3.1 Multiplexing Model of BeiDou B1 Band 64
5.3.2 The First Multiplexing Scheme with GCE-BOC Modulation 66
5.3.3 The Second Multiplexing Scheme with GCE-BOC Modulation 67
5.4 Conclusions 69
Acknowledgments 69
References 69
6 Research of Novel BCC Signal Structure 70
Abstract 70
6.1 Introduction 71
6.2 Basic Features of Communication Signals 72
6.3 Introduction to BCC Signal System 73
6.3.1 BCC Signal Format 74
6.3.2 Preliminary Analysis of Signal Performance 75
6.3.2.1 Power Spectral Density 75
6.3.2.2 Autocorrelation Function 76
6.3.2.3 RMS Bandwidth 77
6.3.2.4 Ranging Accuracy in Theory 77
6.4 Signal Synchronization Algorithm Study 78
6.4.1 Two-Dimensional Refine Algorithm 79
6.4.2 Curve-Fitting Algorithm 80
6.4.3 Long-Term Filter Algorithm 81
6.5 Performance Simulation 81
6.6 Test Verification 83
6.7 Feasibility Analysis of Fusion with Communication 85
6.8 Conclusion 85
References 86
Part II Satellite Navigation Augmentationand Integrity Monitoring 87
7 Research on Multi Satellite Failure Detection and Recognition Method of Satellite Navigation RAIM 88
Abstract 88
7.1 Introduction 89
7.2 RAIM Fault Detection and Recognition Using Least Square Residual Algorithm 90
7.2.1 Least Square Residual Model 90
7.2.2 Fault Detection and Recognition 91
7.2.3 Usability of RAIM Algorithm 92
7.3 A Novel RAIM Detection and Recognition Method for Simultaneous Multiple Satellite Faults 93
7.4 Simulation Validation of Algorithm Performance 97
7.5 Conclusion 100
Acknowledgments 100
References 100
8 Ionospheric Threat Model Methodology for China Area 101
Abstract 101
8.1 Introduction 101
8.2 Data and Preprocessing in Model Construction 102
8.2.1 Data Used in Model Construction 102
8.2.2 Pre-process of GPS Data 103
8.3 Ionospheric Spatial Threat Model Construction 103
8.3.1 `Blob' Spatial Threat Model 103
8.3.2 `Wall' Spatial Threat Model 105
8.4 Comparison of Ionospheric Threat Model in China and North America Areas 107
8.5 Conclusion 109
Acknowledgments 109
9 Real-Time Cycle Slip Detection and Repair Algorithm for SBAS Airborne Receiver 110
Abstract 110
9.1 Introduction 110
9.2 Requirements Analysis 111
9.3 Cycle Slip Detection and Repair Algorithm 113
9.3.1 Fourth Order Differential 113
9.3.2 Chi-Square Detection Algorithm 113
9.3.3 Sequence-Sum Repair Algorithm 114
9.3.4 Algorithm Flow 115
9.4 Performance and Analysis 116
9.4.1 Statistical Property 116
9.4.2 Detection Performance 117
9.4.3 Repair Performance 118
9.4.4 Dynamic Test 119
9.5 Conclusion 120
Acknowledgments 120
References 121
10 Study on Space-Based All Source Navigation Technology 122
Abstract 122
10.1 Introduction 122
10.2 Space-Based Navigation System Architecture 124
10.3 Space Based Navigation System-Wide Load Design 125
10.3.1 Space Platform 125
10.3.2 Signal Receiving 127
10.3.3 Precision Clock Maintenance Technology 129
10.3.4 Signal Design 130
10.3.5 RF Signal Generation and Advertisement 130
10.4 Performance Analysis 131
10.5 Conclusions 131
References 132
11 Carrier-Phase RAIM Algorithm Based on a Vector Autoregressive Model 133
Abstract 133
11.1 Introduction 134
11.2 Algorithms for Multiple Faults Detection and Identification Based on Vector Autoregressive Mode 134
11.2.1 Navigation Equation of RTK Position 134
11.2.2 The Implementation Process for Kalman Filter 135
11.2.3 The Theory of Faults Detection and Identification Based on Vector Autoregressive Model 136
11.2.4 Quantitative Analysis of the Performance of Faults Detection and Identification Algorithm 138
11.3 The Method for Calculating Protection Levels 139
11.3.1 Allocation of Integrity Risks 139
11.3.2 The Method for Computing Vertical Protection Levels 139
11.3.3 The Method for Computing Horizontal Protection Levels 142
11.4 The Implementation Process of the CRAIM Algorithm 143
11.5 Examples and Analysis 144
11.5.1 Examine the Effectiveness of the Faults Detection and Identification 145
11.5.2 Investigate the Probabilities of Missed Detection Under Different Conditions 145
11.5.3 The Computation of Protection Levels 147
11.6 Conclusions 148
Acknowledgments 149
References 149
12 A Beidou Based Multiple-GNSS Positioning Algorithm for Mission Critical Applications 151
Abstract 151
12.1 Introduction 152
12.2 Multi-Constellation Positioning and RAIM Algorithm 153
12.3 Beidou Based Multi Constellation Algorithms 154
12.4 Tests and Results 157
12.4.1 Results for the First Scenario 157
12.4.2 Results for the Second Scenario 159
12.5 Conclusions 163
Acknowledgments 163
References 163
13 A Novel RAIM Algorithm for Single-Frequency GNSS Receiver Based on Virtual Triple-Frequency Techniques 164
Abstract 164
13.1 Introduction 164
13.2 Virtual Triple-Frequency Ionosphere Delay Model 166
13.3 Virtual Triple-Frequency RAIM Algorithm 168
13.3.1 Virtual Triple-Frequency Pseudorange Observation Model 168
13.3.2 Fault Detection of Virtual Triple-Frequency RAIM Algorithm 170
13.3.3 Fault Detection of Virtual Triple-Frequency RAIM Algorithm 171
13.4 Simulation Results 174
13.5 Conclusion 178
References 179
14 Evaluation Method Research on GNSS Signal-in-Space Continuity 180
Abstract 180
14.1 Introduction 180
14.2 Continuity Index Development Research 181
14.2.1 The Development of Continuity Index 181
14.2.2 The Analysis on Evolution of the Continuity of Service to SIS Continuity 182
14.3 GNSS SIS Continuity Evaluation Method Research 183
14.3.1 GNSS SIS Continuity 183
14.3.2 Evaluation Method Analysis Based on the Reliability Theory 184
14.4 The Verification by Statistics of Data 185
14.4.1 Statistics of GPS MTBUO 185
14.4.2 SIS Continuity Analysis for Single Satellite 187
14.5 Conclusion 188
Acknowledgments 188
References 189
15 A New Method of Ionospheric Grid Correction Based on Improved Kriging 190
Abstract 190
15.1 Introduction 191
15.2 Ionospheric Delay Estimation 191
15.2.1 Kriging Algorithm 191
15.2.1.1 Vertical Ionospheric Delay Model 192
15.2.1.2 Grid Ionospheric Vertical Delay Estimation 192
15.2.1.3 Grid Ionospheric Vertical Delay Error Estimation 193
15.2.2 Improved Kriging Algorithm 194
15.3 Algorithm Simulation and Results 195
15.3.1 Algorithm Estimation Accuracy Analysis 196
15.3.2 Algorithm Estimation Performance Analysis 197
15.3.3 User Grid Correction Analysis 199
15.4 Conclusion 200
Acknowledgments 200
References 200
16 A RAIM Method of Pseudo-range Residual Based on Positioning Result of Proportion of Visible Satellites 201
Abstract 201
16.1 Introduction 202
16.2 Description of Least Squares Residual Algorithm 202
16.3 Mathematic Model of Conventional RAIM's Problem 204
16.3.1 Problem in Conventional Methods 204
16.3.2 Mathematic Model 205
16.4 The Method Based on Positioning Result of a Proportion of Visible Satellites 207
16.4.1 Description of the Method 207
16.4.2 Procedure of the Method 208
16.4.2.1 Estimate the Accuracy of Coarse Positioning Result 208
16.4.2.2 Fault Detection and Exclusion 210
16.5 Performance 211
16.5.1 Comparison of Fault Detection 211
16.5.2 Comparison of Positioning Accuracy 211
16.6 Conclusions 212
Acknowledgments 213
References 213
17 Zenith Tropospheric Delay Modeling Method for Sparse Reference Station Network Considering Height Difference 214
Abstract 214
17.1 Introduction 215
17.2 Relation Between Height and ZTD 216
17.3 The ZTD Modeling Method Considering Height Difference 217
17.3.1 Tropospheric Delay Separation of Reference Stations 217
17.3.2 The ZTD Modeling Method Considering Height Difference 218
17.3.2.1 The Height-Strongly Correlated ZTD Modeling Method 218
17.3.2.2 The Height Weakly Correlated ZTD Modeling Method 219
17.4 Experiment Results and Analyses 219
17.4.1 Interpolation Modeling in Undulated Region 219
17.4.2 Interpolation Modeling with Sparse Reference Stations 221
17.4.3 Interpolation Modeling with Different Number of Reference Stations 222
17.5 Concluding Remarks 224
Acknowledgments 225
References 225
18 Performance Monitoring of BeiDou Navigation Satellite System Ionospheric Grid 226
Abstract 226
18.1 Introduction 226
18.2 BDS Ionospheric Grid Model 227
18.2.1 Principle of BDS Ionospheric Grid Corrections 227
18.2.2 Definition of BDS Ionospheric Grid 228
18.2.3 Usage of BDS Ionospheric Grid [4] 230
18.3 Evaluation of BDS Ionospheric Grid Application Performance 231
18.3.1 Analysis of BDS Ionospheric Grid Availability 231
18.3.2 Analysis of BDS Grid Ionospheric Correction Accuracy 232
18.3.3 Analysis of BDS B1 Differential Positioning Accuracy 239
18.4 Conclusions 240
References 241
19 Analysis and Improvement to Ionosphere Grads Integrity Monitoring Algorithm in Ground Based Augmentation System 242
Abstract 242
19.1 Introduction 242
19.2 Ionosphere Grads Integrity Monitoring Principle 243
19.3 Ionosphere Grads Monitoring Algorithm for GBAS 244
19.4 Combinatorial Monitoring Value Algorithm and Performance Analysis 247
19.4.1 Combinatorial Monitoring Value Algorithm 247
19.4.2 Performance Analysis of Combinatorial Algorithm 247
19.4.3 Combination Mode of Monitoring Values 248
19.5 Experiment and Tests 249
19.6 Conclusion 251
Acknowledgments 252
References 252
20 Calibration Method of the IGSO Satellites Ascending Node Longitude 253
Abstract 253
20.1 Introduction 253
20.2 Analysis of IGSO Satellite's Orbit Perturbation 254
20.2.1 Perturbation Induced by the Earth's Shape 254
20.2.2 Luni-solar Perturbation 255
20.3 Calibration Model of the IGSO Satellites Ascending Node Longitude 257
20.4 Simulating Calculation Result of Calibration Model 258
20.5 Calibration Model Validation Results 259
20.6 Conclusion 261
References 261
21 Ionosphere Integrity Monitoring Based on the Combined System of GPS and BDS 263
Abstract 263
21.1 Introduction 263
21.2 Algorithm Processing 264
21.2.1 Transformation of Space-Time System 264
21.2.2 Calculation of Double-Difference Ionosphere Delay 265
21.2.3 Establishing Ionosphere Area Interpolation Model 266
21.2.4 Ionosphere Residual Integrity Monitoring 267
21.2.5 Ionosphere Residual Interpolation Uncertainty 267
21.3 Example Analyses 268
21.3.1 Calculation of Ionosphere Delay 268
21.3.2 Ionosphere Area Interpolation Model 269
21.3.3 Calculation of IRIM 270
21.3.4 Calculation of IRIU 270
21.4 Conclusions 271
Acknowledgments 272
References 272
22 Localizability Analysis of Cooperative Positioning with Range Measurement 273
Abstract 273
22.1 Introduction 273
22.2 Background Knowledge 275
22.2.1 Cooperative Positioning Principle 275
22.2.1.1 Cooperative with Communication 275
22.2.1.2 Cooperative with Range Measurement 275
22.2.2 Observability Theory 276
22.3 Observability Model 276
22.3.1 The State Model 276
22.3.2 The Observation Model 277
22.4 Solution of Cooperative Positioning 277
22.5 Simulation Results 281
22.6 Conclusions 282
References 283
23 Code-Carrier Divergence Monitoring for BeiDou Ground-Based Augmentation System 284
Abstract 284
23.1 Introduction 285
23.2 Carrier Smoothed Code 285
23.2.1 Hatch Filter 285
23.2.2 The Error Analysis in the Process of CSC 286
23.2.3 Smoothed Pseudorange Differential Positioning Simulation Analysis 288
23.3 CCD Algorithm Analysis 289
23.4 Design CCD Threshold and Simulation 291
23.5 Conclusions 294
Acknowledgments 295
References 295
24 Threshold Determination for Integrity Monitoring in Local Area Augmentation System 296
Abstract 296
24.1 Introduction 296
24.2 Conventional Threshold Determination Methods 297
24.3 Threshold Determination 298
24.4 Threshold Determination Instance 300
24.5 Conclusions 303
References 303
25 Multi-constellation Receiver Autonomous Integrity Monitoring with BDS/GPS/Galileo 304
Abstract 304
25.1 Introduction 304
25.2 The Existing RAIM Method for Multiple Faults 305
25.2.1 ``Top Down'' Approach 306
25.2.2 ``Bottom Up'' Approach 306
25.3 Multi-constellation RAIM for Multiple Faults 306
25.3.1 Fault Mode 307
25.3.2 Maximum Likelihood Estimation 307
25.3.3 Fault Mode Identification 308
25.3.4 Algorithm Process 310
25.4 Performance Evaluation 311
25.5 Conclusions 312
Acknowledgments 312
References 313
26 The Service Performance Evaluation of Different Satellite Based Augmentation Systems 314
Abstract 314
26.1 Introduction 314
26.2 Comparison and Analysis of SBAS Service Performance 315
26.2.1 Comparison of Message 315
26.2.2 Comparison of Service Performance 316
26.2.2.1 The SIS Accuracy and Integrity Analysis 316
26.2.2.2 The Analysis of Position Accuracy 318
26.2.2.3 The Analysis of System's Integrity and Availability 321
26.3 The Analysis of Dual-Frequency SBAS Performance 323
26.4 Conclusion 325
References 326
27 An Analysis of the QZSS Signal Based on the Data of IGS 327
Abstract 327
27.1 Introduction 327
27.2 Signal Characteristic 328
27.3 Data Processing Methodology 328
27.3.1 Carrier to Noise Ratio 328
27.3.2 Noise and Multipath Characteristics 329
27.3.3 Inter-frequency Bias 329
27.3.4 Types of Receivers and Antennas 330
27.4 Results and Analysis 330
27.4.1 Carrier to Noise Ratio 330
27.4.1.1 Comparison Between QZSS and GPS 330
27.4.1.2 Changes of C/N0 with the Elevation 331
27.4.2 Noise and Multipath Characteristics 332
27.4.3 Inter-frequency Bias 334
27.4.3.1 Carrier IFB Analysis of QZSS 334
27.4.3.2 Frequency Domain Analysis of QZSS IFB 334
27.5 Conclusion 336
References 337
28 Research on GPS Receiver Autonomous Integrity Monitoring Based on Auxiliary Particle Filter 338
Abstract 338
28.1 Introduction 339
28.2 Auxiliary Particle Filter for GPS RAIM 340
28.2.1 Basic Principle of Auxiliary Particle Filter for GPS RAIM 340
28.2.2 Test Statistics Establishment 340
28.2.3 Decision Threshold Computation 342
28.3 Simulation Test and Results Analysis 343
28.4 Conclusions 346
Acknowledgments 346
References 347
29 Ranging Bias of COMPASS Satellite Signals 348
Abstract 348
29.1 Introduction 348
29.2 Acquisition Method of Clear Satellite Signal Waveform 349
29.3 Ranging Bias Estimation Method 350
29.3.1 Starting Position Estimation of the Pulse Waveform 351
29.3.2 Ranging Bias Estimation 351
29.4 Ranging Bias of COMPASS Signals at B1 Band 352
29.4.1 Processing of Collected Data 352
29.4.2 Effect of Different Segments of Collecting Data on Ranging Bias Estimation 355
29.4.3 Ranging Bias Comparison of Multiple Satellites 355
29.5 Conclusion 356
References 356
30 Research on the Dynamic Configuration of Air-Based Pseudolite Network 357
Abstract 357
30.1 Introduction 357
30.2 Indicators of PL Network Performance Evaluation 358
30.3 Air-Based PL Network Dynamic Configuration 360
30.3.1 The Optimization Objective Function Design for Dynamic Configuration 360
30.3.2 Search for the Optimal Network Configuration Based on PSO 361
30.3.3 Air-Based PL Mobile Control 362
30.4 Simulations 363
30.4.1 Comparison for PLs Static Network Configuration 363
30.4.2 PL Dynamic Adjustment of Interference Suppression 366
30.5 Conclusion 366
References 367
Part III Satellite Navigation Modelsand Methods 368
31 An Improved GNSS Global Ionospheric Model 369
Abstract 369
31.1 Introduction 369
31.2 Method of Data Driving for Ionospheric Model and Its Realization 370
31.2.1 Method of Data Driving in NeQuick Model 370
31.2.2 Spatial and Temporal Variation of Driving Factor ER 371
31.2.2.1 Variation of ER in Different Coordinates Frames 371
31.2.2.2 Variation of ER with Time and MODIP 372
31.2.3 Modeling of ER 373
31.3 Test of ER Model with GNSS Data 374
31.4 Effectiveness Analysis of ER Model 375
31.4.1 Accuracy Analysis of NeQuick Based on ER Model 375
31.4.2 Comparison of ER Model and Az Model in Galileo System 376
31.5 Conclusion 377
Acknowledgments 377
References 377
32 A New Method for Direct Calculation of Ionospheric Delay 379
Abstract 379
32.1 Introduction 379
32.2 Method to Calculate Ionospheric Delay 380
32.2.1 Combination of Triple-Frequency 380
32.2.2 Direct Method 381
32.2.3 New Direct Calculation Method 382
32.3 Simulation and Analysis 383
32.4 Conclusion 384
Acknowledgments 385
References 385
33 Precision Analysis of Wide-Area Ionospheric Correction Triangular Partition Method in Low Latitudes 386
Abstract 386
33.1 The Introduction 387
33.2 Triangular Partition Model 387
33.3 Model Precision Analysis in Low Latitudes 388
33.4 Comparison with the Grid Model 392
33.5 Conclusion 395
Acknowledgments 395
References 395
34 Analysis of Positioning Performance on Combined BDS/GPS/GLONASS 396
Abstract 396
34.1 Introduction 396
34.2 Mathematical Model 397
34.2.1 Observation Equations 397
34.2.2 Combined BDS/GPS/GLONASS Observation Equations 398
34.3 Scheme of Determination to Weight 400
34.3.1 Elevation Weighting 400
34.3.2 Combined Weighting 401
34.4 Experiment Analysis 402
34.5 Conclusions 405
References 406
35 A Real-Time Prediction Algorithm of BDS Satellite Clock Offset Considering Phase Jumps 407
Abstract 407
35.1 Introduction 407
35.2 The Mathematic Model of Phase Jumps 408
35.3 The Prediction Model of BDS Satellite Clock Offset Considering Phase Jumps 409
35.4 The Real-Time Prediction Algorithm of BDS Satellite Clock Offset Considering Phase Jumps 409
35.5 Numerical Examples 411
35.6 Conclusions and Suggestions 414
Acknowledgments 414
References 414
36 The Orbit and Clock Combination of iGMAS Analysis Centers and the Analysis of Their Precision 416
Abstract 416
36.1 Introduction 417
36.2 The Method and Model of Orbit/Clock Combination 417
36.2.1 The Method and Model of Orbit Combination 418
36.2.2 The Method and Model of Clock Combination 420
36.3 Calculation and Analysis 421
36.3.1 The Calculation and Analysis of Orbit Combination 421
36.3.2 The Calculation and Analysis of Clock Combination 425
36.3.3 The Precise Point Positioning (PPP) Tests 429
36.4 Conclusions 432
Acknowledgments 433
References 433
37 Regional Modeling of Atmosphere Delay in Network RTK Based on Multiple Reference Station and Precision Analysis 434
Abstract 434
37.1 Introduction 434
37.2 Atmospheric Delay Corrections Interpolation Model Based on Multiple Reference Stations in Network RTK 435
37.2.1 Ionosphere Delay Interpolation Model Based on Multiple Reference Stations 436
37.2.2 Troposphere Delay Interpolation Model Based on Multiple Reference Stations 437
37.3 Experiments 438
37.4 Conclusion 441
Acknowledgments 442
References 442
38 Reliable RTK Positioning Method Based on Partial Wide-Lane Ambiguity Resolution from GPS/GLONASS/BDS Combination 444
Abstract 444
38.1 Introduction 445
38.2 WL Ambiguity Resolution Model 446
38.2.1 Observation Model 446
38.2.2 Wide-Lane Ambiguity Resolution with Geometry-Based Model 446
38.3 Partial Ambiguity Resolution Method 447
38.4 Experiments 450
38.5 Conclusion 454
Acknowledgments 454
References 454
39 Optimal Kalman Filtering in the Presence of Time-Correlated Process Noise 456
Abstract 456
39.1 Introduction 457
39.2 A Brief Review on CKF with Continuous-Time Dynamic Model 458
39.2.1 Continuous-Time Dynamic Model and Its Discrete Form 458
39.2.2 CKF Formulae 459
39.3 State Augmentation Based Kalman Filtering 460
39.4 The Second Moment Information Based Kalman Filtering 461
39.4.1 SMIKF 461
39.4.2 RSMIKF 462
39.5 Computation Burden Discussions 464
39.6 Simulation Experiment 465
39.7 Concluding Remarks 469
Acknowledgments 470
References 470
40 Prediction and Analysis of Chinese Earth Rotation Parameters Based on Robust Least-Squares and Autoregressive Model 472
Abstract 472
40.1 Introduction 473
40.2 Models 474
40.2.1 RLS Model 474
40.2.2 AR Model 475
40.2.3 Error Analysis 476
40.3 Calculation and Analysis 476
40.3.1 Data Description 476
40.3.2 Data Analysis 477
40.3.3 Data Processing 478
40.4 Conclusions 480
Acknowledgments 481
References 481
41 Research on the Selection Method of Triple Frequency Combination Based on the Beidou Satellite Navigation System 482
Abstract 482
41.1 Introduction 483
41.2 Main Factors Affecting the Positioning Accuracy 484
41.2.1 Integer Ambiguity 485
41.2.2 Ionospheric Delay Error 486
41.2.3 Observation Noise 486
41.3 Selection Standards for Combination Observations Coefficient 487
41.3.1 Long Wavelength Combination Standard 487
41.3.2 Weak Ionospheric Delay Combination Standard 489
41.3.3 Weak Observation Noise Combination Standard 490
41.4 Analysis the Results of Simulation 490
41.4.1 Long Wavelength Combination Observations 490
41.4.2 Weak Ionospheric Delay Combination Observations 491
41.5 Conclusions 492
Acknowledgments 492
References 492
42 A Baseline Ambiguity Resolution Using Un-combined and Un-differenced Model with Equality Constraint 493
Abstract 493
42.1 Introduction 493
42.2 The Observation Equations 494
42.2.1 Un-Combined Observation Equations 495
42.2.2 The Equality Constraint 496
42.3 Test Results and Analysis 497
42.3.1 The Short Baseline Test 497
42.3.2 The Medium Baseline Test 500
42.4 Conclusions 503
Acknowledgments 503
References 503
43 Using IGMAS/MGEX Ground Tracking Station Data to Solve the Global Beidou Satellite DCB Products 505
Abstract 505
43.1 Introduction 505
43.2 Mathematical Model 506
43.2.1 Observation Equation 506
43.2.2 Constraint Condition 508
43.3 Solution Procedure 508
43.3.1 Calculating Model and Method 508
43.4 Exemplification 509
43.4.1 Validation of Strategy Based on GPS Data 509
43.4.2 DCB Results and Analysis Based on BDS Data 510
43.4.2.1 DCB(C2I-C7I) of BDS Satellite 511
43.4.2.2 DCB(C2I-C6I) of BDS Satellite 512
43.4.3 DCB(C2I-C7I) of BDS Receiver 512
43.5 Conclusion 514
Acknowledgments 514
References 515
44 BeiDou Satellite Navigation System (BDS) Real-Time Orbit Determination and Accuracy Analysis 516
Abstract 516
44.1 Introduction 517
44.2 Mathematical Models 517
44.3 BDS Real-Time Orbit Determination Methods 518
44.3.1 Data Source Description 518
44.3.2 Requirement of Stations Number and Distribution 519
44.3.3 Calculation Process 520
44.4 Results and Discussions 520
44.5 Conclusions and Recommendations 524
Acknowledgments 525
References 525
45 Periodic Oscillation Analysis of Gps Height Time Series Based on HHT 526
Abstract 526
45.1 Introduction 526
45.2 EMD-HHT Algorithm 527
45.2.1 EMD Theory 527
45.2.2 Hilbert Spectroscopy 528
45.3 Analysis of Examples 529
45.3.1 Data Source 529
45.3.2 Physical Reasons 529
45.3.3 Example Results 531
45.4 Conclusion 536
References 536
46 Analysis of Ionosphere Modeling Accuracy Based on Multi-GNSS Data 538
Abstract 538
46.1 Introduction 538
46.2 Basic Principles and Methods 539
46.3 Experiment and Analysis 541
46.3.1 Ionosphere Accuracy 542
46.3.2 The Accuracy of DCB Parameters 543
46.4 Conclusions 544
Acknowledgments 544
References 544
47 Precision Assessment of Broadcast Ionospheric Model of GNSS Based on Real Data of Base Station 546
Abstract 546
47.1 Introduction 546
47.2 Real Ionospheric Delay on Base Station 547
47.2.1 Extracting TEC from GPS Data 547
47.2.2 The Generalized Trigonometric Series Function Model 548
47.3 Experiments Test and Analysis 549
47.3.1 Accuracy of Satellite DCB 550
47.3.2 Accuracy of Real Ionospheric Delay 550
47.3.3 Precision Assessment of GNSS Broadcast Ionospheric Models 551
47.4 Conclusion 553
References 553
48 The Characteristics Investigation of Ground-Based GPS/PWV During the ``7.21'' Extreme Rainfall Event in Beijing 555
Abstract 555
48.1 Introduction 556
48.2 Data and Methodology 556
48.3 Precipitation Process 557
48.4 Spatial Distribution of ``7.21'' Extreme Rainfall 558
48.5 Correlation of Rainfall and GPS/PWV 559
48.6 The Lag Correlation 559
48.7 Distribution of GPS/PWV 562
48.8 Summary and Discussion 563
Acknowledgments 565
References 565
49 Instantaneous and Controllable GNSS Integer Aperture Ambiguity Resolution with Difference Test 567
Abstract 567
49.1 Introduction 568
49.2 Difference Test and Its Properties 570
49.2.1 Aperture Pull-in Regions Based on DT 570
49.2.2 Probability Evaluations of DTIA Estimator 571
49.2.3 Probability Evaluations for Pull-in Regions of ILS and DTIA 573
49.3 Instantaneous and Controllable IA Ambiguity Resolution 575
49.3.1 FFR Approach Based on Monte Carlo Integral 575
49.3.2 ICON IA Ambiguity Resolution 576
49.4 Experiment Verification 577
49.5 Conclusions 581
Acknowledgements 582
References 582
50 Can BDS Improve Tsunami Early Warning in South China Sea? 584
Abstract 584
50.1 Introduction 585
50.2 Potential of Retrieving Co-seismic Signal Using RT---BDS 587
50.2.1 Performance of Velocity Determination from BDS 588
50.2.2 Performance of BDS Temporal Point Positioning 590
50.3 Can BDS Recognise a Strong Tsunamigenic Earthquake in Real Time? A Scenario Case for Luzon Island 590
50.4 Summary 592
Acknowledgements 593
References 593
51 GTm_X: A New Version Global Weighted Mean Temperature Model 595
Abstract 595
51.1 Introduction 595
51.2 Model Establishment 597
51.3 Accuracy Verification 597
51.4 Conclusions 600
References 601
52 Multi-GNSS PPP and PPP-RTK: Some GPS+BDS Results in Australia 602
Abstract 602
52.1 Introduction 602
52.2 PPP and PPP-RTK Models 603
52.3 Some PPP and PPP-RTK Results for GPS and BDS 606
52.4 Conclusions 611
Acknowledgments 612
References 612

Erscheint lt. Verlag 11.5.2015
Reihe/Serie Lecture Notes in Electrical Engineering
Zusatzinfo XVIII, 623 p. 336 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Physik / Astronomie
Technik Luft- / Raumfahrttechnik
Technik Nachrichtentechnik
Schlagworte BeiDou System (BDS) • Chinese GNSS • Compass/BDS • CSNC2015 • GNSS • Satellite navigation • Satellite navigation conference
ISBN-10 3-662-46635-X / 366246635X
ISBN-13 978-3-662-46635-3 / 9783662466353
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Wolfgang Torge; Jürgen Müller; Roland Pail

eBook Download (2023)
De Gruyter (Verlag)
69,95