Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology -  Bijoy Bhattacharyya

Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
296 Seiten
Elsevier Science (Verlag)
978-0-323-35288-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
122,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology is the first book solely dedicated to electrochemical micromachining (EMM). It begins with fundamentals, techniques, processes, and conditions, continuing with in-depth discussions of mechanisms of material removal, including an empirical model on the material removal rate for EMM (supported by experimental validation). The book moves next to construction-related features of EMM setup suitable for industrial micromachining applications, varying types of EMM, and the latest developments in the improvement of EMM setup. Further, it covers power supply, roll of electrolyte, and other major factors influencing EMM processes, and reports research findings concerning the improvement of machining accuracy and efficiency. Finally, the book devotes a chapter to the design and development of micro-tools, one of the most vital components in EMM.
  • Covers the generation of micro features used for advanced engineering of materials for fabrication of MEMS, microsystems and other micro-engineering applications
  • Explores the trend of decreasing size of fabricated devices, reflected in coverage of generation of high-precision nano-features on metal and semiconductors utilizing SPM, STM, and AFM, and nanotechnology aspects of EMM
  • Describes nanofabrication utilizing anodic dissolutions for mass manufacturing by overcoming obstacles utilizing electrochemical microsystem technology (EMST) and electrochemical nanotechnology (ENT)


Professor, Production Engineering Department, Jadavpur University, Kolkata, India
Field of Specialization: Non-Traditional Machining Processes, Micro Machining.
Advanced Manufacturing Technology (AMT), Production Management.
Principal Investigator since 1995 for seven multi-year research projects e.g. on Electrochemical Machining (ECM), Electrochemical Discharge Machining (ECDM), and Electrochemical Micromachining (EMM)
Professor, Production Engineering Department, since 2000
Head of the Department, Production Engineering Department, from 2001 to 2003
Coordinator of Quality Improvement Program (QIP), Jadavpur University, since 2002
Coordinator of Center of Advanced Study (CAS) Phase II-IV Programs consisting thrust areas: Micromachining and Nanotechnology, Micromanufacturing, sponsored by UGC, since 2003
Achieved several Certificates of Merit and Certificates of Achievement Institution Award & Gold Medal by The Institution of Engineers (India) for a research paper Keynote speaker, chair person, presenter and organizer/coordinator of several international conferences.
Visited several countries such as England, Dublin, Taiwan, Hongkong, Thailand etc. for research and academic purposes.
Board member and Fellow of several academic bodies in several institutions
Guest editor of International journals and editor of conference proceedings
Supervised several Ph.D thesis and filed several patents in his credit.
Authored and co-authored around 353+ articles
Author of 83 articles with 1352 total citations by 959 documents as listed in Scopus
H-Index of 24 per SCOPUS
Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology is the first book solely dedicated to electrochemical micromachining (EMM). It begins with fundamentals, techniques, processes, and conditions, continuing with in-depth discussions of mechanisms of material removal, including an empirical model on the material removal rate for EMM (supported by experimental validation). The book moves next to construction-related features of EMM setup suitable for industrial micromachining applications, varying types of EMM, and the latest developments in the improvement of EMM setup. Further, it covers power supply, roll of electrolyte, and other major factors influencing EMM processes, and reports research findings concerning the improvement of machining accuracy and efficiency. Finally, the book devotes a chapter to the design and development of micro-tools, one of the most vital components in EMM. Covers the generation of micro features used for advanced engineering of materials for fabrication of MEMS, microsystems and other micro-engineering applications Explores the trend of decreasing size of fabricated devices, reflected in coverage of generation of high-precision nano-features on metal and semiconductors utilizing SPM, STM, and AFM, and nanotechnology aspects of EMM Describes nanofabrication utilizing anodic dissolutions for mass manufacturing by overcoming obstacles utilizing electrochemical microsystem technology (EMST) and electrochemical nanotechnology (ENT)

Symbols


m = Mass of a substance altered at an electrode
Q = Total electric charge passed
F = Faraday constant
M = Molar mass of a substance
z = Valency
I = Current
t = Time
n = Number of moles
ne = Number of electrons
A = Area; Atomic weight (Chapter 1); Aspect ratio (Chapter 13)
i′ = Current density
i = Partial current; number of machining parameters (Chapter 8)
E = Electrode potential
Eeq = Equilibrium electrode potential
Ei = Electrode potential at current i
E0 = Electrode potential at zero current
ΔE = Electrode polarization
E0′ = Formal potential which is the adjusted form of standard potential
v = Reaction rate
vrxn = Net rate of the electrode reaction
H = Heat generated
R = Electrical resistance
V = Voltage
C = Concentration
δ0 = Nernst diffusion layer thickness
vmt = Rate of mass transfer
m0 = Mass transfer coefficient of species O
0∗  = Bulk concentration of species O
D0 = Diffusion coefficient at x = 0
CO = Concentration of species O
CR = Concentration of species R
R∗ = Bulk concentration of species R
mR = Mass transfer coefficient of species R
T = Temperature in Kelvin
R′ = Universal gas constant
Rct = Charge transfer resistance
η = Over potential
ηac = Activation overpotential
ji = Partial current density
j = Total current density
˙ = Actual observed mass removal
η′ = Power conversion efficiency
Uoc = Open-circuit potential
Jsc = Short-circuit current density
FF = Fill factor
E0 = Irradiance
τ = Charging time constant
Cd = Resistance of double layer
ω = Radial frequency
Cd = Double-layer capacitance
RW = Warburg Impedance
σ = Warburg coefficient
Rct = Charge transfer resistance
i0 = Exchange current density
Tb = Boiling temperature
T0 = Temperature at the inlet
U0 = Velocity at the inlet
ea = Electrochemical equivalent of anode
ce = Specific heat of electrolyte
h0 = Equilibrium gap width at gap inlet
ρa = Anode metal density
ρ0 = Density at gap inlet
f′ = Feed rate of the tool
ρs = Specific resistance or resistivity of electrolyte
h = Inter-electrode gap
Qv = Volume of material removed
K = Electrochemical constant for a particular material
ηc = Efficiency of dissolution or current efficiency
Qact = Actual weight loss or actual material removed
Qth = Theoretical weight loss or theoretical material removed
J = Anodic limiting current density
D = Effective diffusion coefficient
Csat = Surface concentration
Jmt = Current density due to migration and diffusion
D′ = Diffusivity
V/∂X = Potential gradient
C/∂X = Concentration gradient
q = Charge stored in the capacitor
C′, C (Chapter 3) = Capacitance
Ri = Inter-electrode gap resistance
Re = Electrolyte resistance
ic = Charging current
Rshort = Resistance across small flow path between the front end of the tool and workpiece surface i.e., IEG
Rlong = Resistance across long flow path between longitudinal surface of the tool and workpiece along the side of tool
RP = Polarization resistance
η′a = Over potential at anode
η′c = Over potential at cathode
jmt = Current density due to mass transfer
jet = Current density due to electron transfer
Ceq = Equivalent capacitance
V0 = On-time voltage
α = Charge transfer coefficient
M′ = Molecular mass
Von−time = Volume of material removed per pulse
ton = Pulse on time
t∗ = Time required for charging of double layer
V∗ = Flat shape waveform voltage
f = Pulse frequency in...

Erscheint lt. Verlag 10.4.2015
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Bauwesen
ISBN-10 0-323-35288-X / 032335288X
ISBN-13 978-0-323-35288-8 / 9780323352888
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 28,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 18,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99