Professor Button has worked at UNICAMP, Brazil since 1983. She teaches transduction of biomedical measurements and biomedical instrumentation for postgraduate students and her main areas of interest and research are biomedical instrumentation, ultrasound transducers, biomedical imaging and signals processing, and clinical engineering.
Principles of Measurement and Transduction of Biomedical Variables is a comprehensive text on biomedical transducers covering the principles of functioning, application examples and new technology solutions. It presents technical and theoretical principles to measure biomedical variables, such as arterial blood pressure, blood flow, temperature and CO2 concentration in exhaled air and their transduction to an electrical variable, such as voltage, so they can be more easily quantified, processed and visualized as numerical values and graphics. The book includes the functioning principle, block diagram, modelling equations and basic application of different transducers, and is an ideal resource for teaching measurement and transduction of biomedical variables in undergraduate and postgraduate biomedical engineering programs. - Will help you to understand the design and functioning of biomedical transducers through practical examples and applied information- Covers MEMS and laser sensors- Reviews the range of devices and techniques available plus the advantages and shortcomings for each transducer type
Electrodes for Biopotential Recording and Tissue Stimulation
The electrical activity of a living tissue occurs at cellular level and is strictly dependent on the cell membrane. Virtually all living cells exhibit an electrical voltage difference between the cytoplasm (negative) and the extracellular surrounding (positive). Biological tissue does not have free electronic charges to move between the energy bands observed in semiconductors and metals, otherwise its electric charges are due to ions from dissociation of compounds in aqueous intra- and extracellular environments. A transducer that converts ionic current into electronic current can measure the ion flow caused by cell membrane depolarization and repolarization, which originates the action potential. Biopotential electrodes are mostly metallic and act as transducers converting ion flows into electronic current, which biomedical equipment detects and processes. This chapter explains the functioning of standard electrodes, used in the determination of half-cell potential of metals, and the importance of the electrode/electrolyte/skin interfaces in noninvasive biopotential detection. It also explains the functioning of the main types of surface and invasive electrodes used in the detection of biopotential. Stimulation electrodes are also presented.
Keywords
Biopotential; cell membrane; electrodes; half-cell potential
Contents
2.3 Electrode–Electrolyte Interface 29
2.3.1 Half-cell potential (Vhc) 31
2.3.1.1 Hydrogen reference electrode 32
2.3.1.2 Ag–AgCl reference electrode 34
2.3.1.3 Calomel reference electrode 37
2.3.2 Equivalent electronic circuit of the electrode/electrolyte interface 38
2.4 Electrolyte–Skin Interface 40
2.5 Artifacts of Measurement 41
2.5.3 Electrode polarization 44
2.5.3.1 Ohmic overpotential 45
2.5.3.2 Concentration overpotential 45
2.5.3.3 Activation overpotential 46
2.5.4 Liquid junction potential 46
2.6 Electrodes Classification 47
2.6.1 Noninvasive electrodes 47
2.6.1.2 Flexible electrodes 54
2.6.2.1 Needle and wire electrodes 56
2.6.3 Electrodes for tissue stimulation 66
2.6.3.1 Constant-current stimulation 70
2.6.3.2 Constant-voltage stimulation 71
References 74
2.1 Introduction
Biopotential electrodes act as an interface between the biological tissue and the electronic measuring circuit, performing the transduction of ion current into electronic current. They are generally made of noble metal (silver, steel, gold) in different shapes (circular, rectangular, needle-shaped, etc.) and are coated with a salt, such as silver chloride, or polymers, such as Nafion® (fluoropolymer–copolymer based on the sulfonated tetrafluoroethylene discovered in the late 1960s by Walther Grot de Du Pont). The surface of a metal electrode is coupled to the skin through electrolyte gel. The salt and the electrolyte gel help transducing the flow of ionic charges into an electronic current.
This chapter presents the main concepts for understanding how biopotentials are registered, the functioning of the electrode/electrolyte and electrolyte/skin interfaces, the electrical characteristics of biopotential electrodes and the different types of electrodes used to register biopotential. At the end of chapter, it will be possible to understand how the transduction of a biopotential occurs, that is, how the events which begin with the exchange of ions across the cell membrane can be represented by an electrical signal captured with a metal electrode placed over the body surface or inserted into the biological tissue.
2.2 Biopotentials
The dynamic equilibrium that maintains the human body functioning involves chemical reactions to break the bonds of ingested nutrients, the construction of biopolymers such as proteins, nucleic acids, lipids, and carbohydrates and the disposal of metabolic wastes like urea and water. Although chemical reactions are always in the origin of energy distribution and synthesis of molecular constituents in living organisms, other types of energy are also needed, such as electric (biopotentials), mechanical (motion), thermal (especially in endothermic vertebrates), and even light (bioluminescence).
Electrical activity in biological tissues is dependent on the cells membrane state. Usually a difference in electrical potential is detected between the inside (cytoplasm) and the outside of the living cells. In membrane resting state, the value of this potential difference varies, according to cell type, between 5 and 100 mV, often with the interior of the cell with negative polarity relative to the outside. Figure 2.1 shows the record of the resting potential of a cell made with a microelectrode inserted through the membrane and a table with typical values of the resting potential of some biological tissues.
Figure 2.1 (A) Schematic diagram of the measurement of the difference in electrical potential between the interior and exterior of the resting membrane of a living cell (Em). (B) Membrane potential values of different biological tissues cells.
In biological tissue, there is no availability of free electrons and holes moving in an analogous way to what occurs in conduction and valence bands of conductive and semiconductive materials. Electric charges correspond to ions of dissociated compounds in intra- and extracellular aqueous media. Thus, the intra- and extracellular environments are conductive solutions containing charged atoms or ions, and the main are potassium (K+), sodium (Na+), and chloride (Cl−). Mechanisms of ions selective transport across the cell membrane regulate the ionic concentration in the intra- and extracellular environments. Among other factors, the cell’s transmembrane resting potential is due to the unequal concentration of ions on both sides of the membrane, active or passively partitioned by selective mechanisms of transmembrane ion transport. The effect of intra- and extracellular concentrations of potassium, sodium, and chloride ions at the ionic equilibrium potential is illustrated in Table 2.1.
Table 2.1
Ionic equilibrium potential (Eeq)
The cell membrane acts as a capacitor, storing spatial distribution energy of the electrically charged ions in the intra- and extracellular environments. This potential energy is available to be quickly used and stabilizes the membrane, preventing this system to be disturbed, for example, by a subthreshold excitation.
Excitable cells, which are neurons, myocytes, and endocrine cells, can be activated when some form of energy (ionic current flow, temperature variation, pulse ultrasound, electric current, etc.) is applied to their membranes. Figure 2.2 shows a typical waveform of an action potential triggered by any stimulus, provided that it is suprathreshold. The characteristics of the active membrane change:
• sodium ions enter the cell (sodium channels open initiating depolarization or rising phase);
• the membrane potential leaves the “resting,” its value rises and can even reverse its polarity (for a few miliseconds), that is, the inner side of the cell becomes more positive than the outside;
• potassium channels open (take longer than sodium) and potassium ions leave the cell;
• at the same time the sodium channels begin to close, reversing the depolarization (descent or repolarization phase);
• potassium channels are slow to close and membrane hyperpolarization can occur reaching lower values than the resting potential;
• the nonexcited condition of the membrane permeability is reversed and the resting potential is restored;
• after the restoration of the resting potential, the cell goes through a refractory period (there are exceptions) and is not able to respond to a new stimulus.
Figure 2.2 A typical action potential waveform.
The propagation of the action potential across the membrane of an excitable cell occurs by the succession of depolarization and repolarization phases caused by the flow of transmembrane ionic currents, with ions flowing in and out of the cell. Figure...
Erscheint lt. Verlag | 7.4.2015 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie |
Naturwissenschaften ► Chemie | |
Technik ► Medizintechnik | |
ISBN-10 | 0-12-801144-0 / 0128011440 |
ISBN-13 | 978-0-12-801144-7 / 9780128011447 |
Haben Sie eine Frage zum Produkt? |
Größe: 20,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 7,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich