Hormones and Transport Systems

Hormones and Transport Systems (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
556 Seiten
Elsevier Science (Verlag)
978-0-12-803028-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
150,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press.

The Series provides up-to-date information on vitamin and hormone research spanning data from molecular biology to the clinic. A volume can focus on a single molecule or on a disease that is related to vitamins or hormones.  A hormone is interpreted broadly so that related substances, such as transmitters, cytokines, growth factors and others can be reviewed.

This volume focuses on hormone and transport systems.


  • Expertise of the contributors
  • Coverage of a vast array of subjects
  • In depth current information at the molecular to the clinical levels

First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. The Series provides up-to-date information on vitamin and hormone research spanning data from molecular biology to the clinic. A volume can focus on a single molecule or on a disease that is related to vitamins or hormones. A hormone is interpreted broadly so that related substances, such as transmitters, cytokines, growth factors and others can be reviewed. This volume focuses on hormone and transport systems. Expertise of the contributors Coverage of a vast array of subjects In depth current information at the molecular to the clinical levels

Chapter One

Dietary I− Absorption


Expression and Regulation of the Na+/I− Symporter in the Intestine


Juan Pablo Nicola*; Nancy Carrasco,1; Ana María Masini-Repiso*,1    * Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
† Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
1 Corresponding authors: email address: nancy.carrasco@yale.edu, amasini@fcq.unc.edu.ar

Abstract


Thyroid hormones are critical for the normal development, growth, and functional maturation of several tissues, including the central nervous system. Iodine is an essential constituent of the thyroid hormones, the only iodine-containing molecules in vertebrates. Dietary iodide (I−) absorption in the gastrointestinal tract is the first step in I− metabolism, as the diet is the only source of I− for land-dwelling vertebrates. The Na+/I− symporter (NIS), an integral plasma membrane glycoprotein located in the brush border of enterocytes, constitutes a central component of the I− absorption system in the small intestine. In this chapter, we review the most recent research on structure/function relations in NIS and the protein's I− transport mechanism and stoichiometry, with a special focus on the tissue distribution and hormonal regulation of NIS, as well as the role of NIS in mediating I− homeostasis. We further discuss recent findings concerning the autoregulatory effect of I− on I− metabolism in enterocytes: high intracellular I− concentrations in enterocytes decrease NIS-mediated uptake of I− through a complex array of posttranscriptional mechanisms, e.g., downregulation of NIS expression at the plasma membrane, increased NIS protein degradation, and reduction of NIS mRNA stability leading to decreased NIS mRNA levels. Since the molecular identification of NIS, great progress has been made not only in understanding the role of NIS in I− homeostasis but also in developing protocols for NIS-mediated imaging and treatment of various diseases.

Keywords

Na+/I− symporter

Iodide

Thyroid hormones

Dietary iodide absorption

Iodide deficiency disorders

Small intestine

Brush border

Posttranscriptional regulation

3′-Untranslated region

1 The Importance of Iodide in Human Health


Iodide (I−) uptake in the thyroid gland is the first step in the biosynthesis of thyroid hormones—triiodothyronine (T3) and thyroxine (T4) (Portulano, Paroder-Belenitsky, & Carrasco, 2014). Thyroid hormones are the only iodine-containing hormones in vertebrates and are required for the development and maturation of the central nervous system, skeletal muscle, and lungs in the fetus and the newborn. They are also primary regulators of intermediate metabolism and effect pleiotropic modulation in virtually all organs and tissues throughout life (Yen, 2001).

Iodine is an extremely scarce element in the environment and is supplied to the body exclusively through the diet. Insufficient dietary I− intake may cause mild to severe hypothyroidism and subsequently goiter, stunted growth, retarded psychomotor development, and even cretinism (impairment of physical growth and irreversible mental retardation due to severe thyroid hormone deficiency during childhood) (Zimmermann, 2009). I− deficiency-associated diseases are the most common preventable cause of mental retardation in the world and were slated for global eradication by iodination of table salt by the year 1990 by the World Health Organization. Although significant progress has been made, there were still an estimated 1.88 billion people suffering from insufficient I− intake in 2011 (Andersson, Karumbunathan, & Zimmermann, 2012).

As iodine is an irreplaceable component of thyroid hormones, normal thyroid physiology relies on adequate dietary I− intake, gastrointestinal I− absorption, and proper I− accumulation in thyrocytes. Therefore, the evolution of a highly efficient system to avidly accumulate I− appears to be a physiological adaptation to compensate for the environmental scarcity of iodine.

2 The Na+/I− Symporter


The thyroid gland has developed a remarkably efficient system to ensure an adequate supply of I− for thyroid hormone biosynthesis. Under physiological conditions, the thyroid concentrates I− approximately 40-fold with respect to the plasma concentration (Wolff & Maurey, 1961). Moreover, the ability of the thyroid to concentrate I− has provided the molecular basis for the use of radioiodide in the diagnosis, treatment, and follow-up of thyroid pathology (Bonnema & Hegedus, 2012; Reiners, Hanscheid, Luster, Lassmann, & Verburg, 2011). A major breakthrough in the field—as important as the introduction of radioactive I− isotopes into the study of thyroid physiology near the middle of the twentieth century (Hertz, Roberts, Means, & Evans, 1940)—was the identification of the complementary DNA (cDNA) encoding the Na+/I− symporter (NIS), the protein that mediates I− transport in the thyroid (Dai, Levy, & Carrasco, 1996). The identification of NIS started a new era of intensive I− research.

2.1 Molecular identification of NIS


The journey toward the identification of NIS began with the isolation of poly(A+) RNA from FRTL-5 cells, a line of highly differentiated rat thyroid-derived cells which, microinjected into Xenopus laevis oocytes, produced Na+-dependent I− transport (Vilijn & Carrasco, 1989). Thereafter, the cDNA encoding NIS was isolated by expression cloning in X. laevis oocytes using cDNA libraries generated from FRTL-5 cells (Dai et al., 1996). The full nucleotide sequence revealed an open reading frame of 1,854 nucleotides encoding a protein of 618 amino acids. Shortly thereafter, the screening of a human thyroid cDNA library with rat NIS probes enabled the identification of human NIS (Smanik et al., 1996), which exhibits 84% identity and 93% similarity to rat NIS. The human NIS gene was mapped to chromosome 19p13.11 and comprises 15 exons with an open reading frame of 1,929 nucleotides, giving rise to a protein of 643 amino acids (Smanik, Ryu, Theil, Mazzaferri, & Jhiang, 1997).

NIS is an intrinsic plasma membrane glycoprotein. The current, experimentally tested NIS secondary structure model shows a hydrophobic protein with 13 transmembrane segments (TMSs), an extracellular amino terminus and an intracellular carboxy terminus (Levy et al., 1997, 1998; Fig. 1A). Moreover, NIS is a highly N-glycosylated protein, although N-glycosylation is not essential for I− transport or NIS trafficking to the plasma membrane (Levy et al., 1998).

Figure 1 NIS secondary and tertiary structure. (A) Secondary structure. NIS secondary structure model showing the 13 transmembrane segments from the extracellular amino terminus to the intracellular carboxy terminus. Black triangles mark N-linked glycosylation sites at N225, N485, and N497. (B) Tertiary structure. Membrane plane of the NIS homology model built using the rat NIS sequence including residues G50 through L476 (Paroder-Belenitsky et al., 2011), based on the X-ray structure of vSGLT. The NIS homology model is shown as a ribbon representation and rainbow colored by sequence, from the amino terminus (blue) to the carboxy terminus (red).

NIS-driven active transport of I− into the thyroid is electrogenic and relies on the driving force of the Na+ gradient generated by the Na+/K+ ATPase and the electrical potential across the plasma membrane. By coupling the inward transport of Na+ down its electrochemical gradient to the translocation of I− against its electrochemical gradient across the plasma membrane, NIS avidly concentrates I− into the cells (Dai et al., 1996; Eskandari et al., 1997).

Like all membrane transporters, NIS belongs to the solute-carrier gene (SLC) superfamily. In particular, NIS is a member of solute-carrier family 5A (SLC5A) and has been designated SLC5A5 according to the Human Genome Organization (HUGO) Gene Nomenclature Committee. To date, the only crystal structure of a member of SLC5A is that of the Vibrio parahaemolyticus Na+/galactose transporter (vSGLT), a bacterial homologue of the human SGLT1 (SLC5A1) (Faham et al., 2008). Despite the lack of sequence homology, as predicted by De la Vieja, Reed, Ginter, and Carrasco (2007), the structure of vSGLT revealed the same fold—an inverted topology repeat and unwound helices in regions critical for substrate binding—and a Na+ coordination similar to that observed in the high-resolution (1.65 Å) crystal structure of the leucine transporter (LeuT) from Aquifex aeolicus (LeuT) (Yamashita, Singh, Kawate, Jin, & Gouaux, 2005). Remarkably, NIS shares significant identity (27%) and homology (58%) with vSGLT—almost as much as SGLT1 does (31% identity, 62%...

Erscheint lt. Verlag 26.3.2015
Mitarbeit Herausgeber (Serie): Gerald Litwack
Sprache englisch
Themenwelt Medizinische Fachgebiete Innere Medizin Endokrinologie
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Naturwissenschaften Biologie Zoologie
Technik
ISBN-10 0-12-803028-3 / 0128030283
ISBN-13 978-0-12-803028-8 / 9780128030288
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Wichtigste für Ärztinnen und Ärzte aller Fachrichtungen

von Ulrich Alfons Müller; Günther Egidi …

eBook Download (2021)
Urban & Fischer Verlag - Fachbücher
36,99