Machine Learning in Radiation Oncology
Springer International Publishing (Verlag)
978-3-319-18304-6 (ISBN)
Introduction: What is Machine Learning.- Computational Learning Theory.- Overview of Supervised Learning Methods.- Overview of Unsupervised Learning Methods.- Performance Evaluation.- Variety of Applications in Radiation Oncology.- Machine Learning for Quality Assurance: Quality Assurance as a Learning Problem.- Detection of Radiotherapy Errors Using Unsupervised Learning.- Prediction of Radiotherapy Errors Using Supervised Learning.- Machine Learning for Computer-Aided Detection: Detection of Cancer Lesions from Imaging.- Classification of Malignant and Benign Tumours.- Machine Learning for Treatment Planning and Delivery.- Image-guided Radiotherapy with Machine Learning: IMRT Optimization Using Machine Learning.- Treatment Assessment Tools.- Machine Learning for Motion Management: Prediction of Respiratory Motion.- Motion-Correction Using Learning Methods.- Machine Learning Application in 4D-CT.- Machine Learning Application in Dynamic Delivery.- Machine Learning for Outcomes Modeling: Bioinformatics of Treatment Response.- Modelling of Norma Tissue Complication Probabilities (NTCP).- Modelling of Tumour Control Probability (TCP).
Erscheint lt. Verlag | 30.6.2015 |
---|---|
Zusatzinfo | XIV, 336 p. 127 illus., 67 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Onkologie |
Medizinische Fachgebiete ► Radiologie / Bildgebende Verfahren ► Radiologie | |
Naturwissenschaften ► Chemie ► Physikalische Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Schlagworte | machine learning • medical physics • Outcome Modelling • radiation oncology • radiation physics • Radiaton Oncology • Treatment Planning |
ISBN-10 | 3-319-18304-4 / 3319183044 |
ISBN-13 | 978-3-319-18304-6 / 9783319183046 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich