Cellular Adhesion in Development and Disease -

Cellular Adhesion in Development and Disease (eBook)

Alpha Yap (Herausgeber)

eBook Download: PDF | EPUB
2015 | 1. Auflage
536 Seiten
Elsevier Science (Verlag)
978-0-12-407889-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
150,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Cell adhesion is a fundamental determinant of embryonic development and organogenesis. Cellular Adhesion in Development and Disease, volume 112 in Current Topics in Developmental Biology, comprehensively surveys current developments in understanding how adhesion systems affect organismal development. Topics covered include nectins, nectin-like molecules, and afadin in development; cadherin adhesion, signaling, and morphogenesis; endothelial cell junctions; epidermal development and barrier formation; and more.


  • This book surveys current understanding of how adhesion systems affect organismal development

Cell adhesion is a fundamental determinant of embryonic development and organogenesis. Cellular Adhesion in Development and Disease, volume 112 in Current Topics in Developmental Biology, comprehensively surveys current developments in understanding how adhesion systems affect organismal development. Topics covered include nectins, nectin-like molecules, and afadin in development; cadherin adhesion, signaling, and morphogenesis; endothelial cell junctions; epidermal development and barrier formation; and more. This book surveys current understanding of how adhesion systems affect organismal development

Chapter One

How Adhesion Forms the Early Mammalian Embryo


Melanie D. White; Nicolas Plachta1    European Molecular Biology Laboratory (EMBL) Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
1 Corresponding author: email address: nicolas.plachta@emblaustralia.org

Abstract


The early mouse embryo is an excellent system to study how a small group of initially rounded cells start to change shape and establish the first forms of adhesion-based cell–cell interactions in mammals in vivo. In addition to its critical role in the structural integrity of the embryo, we discuss here how adhesion is important to regulate cell polarity and cell fate. Recent evidence suggests that adherens junctions participate in signaling pathways by localizing key proteins to subcellular microdomains. E-cadherin has been identified as the main player required for the establishment of adhesion but other mechanisms involving additional proteins or physical forces acting in the embryo may also contribute. Application of new technologies that enable high-resolution quantitative imaging of adhesion protein dynamics and measurements of biomechanical forces will provide a greater understanding of how adhesion patterns the early mammalian embryo.

Keywords

Adhesion

Preimplantation development

Mouse embryo

E-cadherin

Pluripotent cell

Blastocyst

1 The Mouse Preimplantation Embryo as a Model of Adhesion in Mammalian Development


Most research on adhesion has been performed on cells in tissue culture due to their availability and ease of manipulation. However, it is only during true cellular differentiation within an embryo that the contribution of adhesion to development can be examined directly. The mouse preimplantation embryo provides an ideal system to study adhesion mechanisms that are based exclusively on cell–cell interactions. A glycoprotein membrane, the zona pellucida, encloses the preimplantation embryo so cell–cell adhesion can be studied in the complete absence of extracellular matrix interactions.

Preimplantation development naturally occurs within the oviduct, but it can be recapitulated in vitro without adversely affecting the developmental potential of embryos (Summers & Biggers, 2003). Mouse embryos can be easily removed from the maternal oviducts and cultured in simple media conditions. Under these ex utero conditions, the embryos develop almost as rapidly as they do in utero and if transferred back to the uterus they can implant and continue developing to produce viable offspring.

During the first 2 days of development, the fertilized mouse egg undergoes three cleavage divisions to produce an 8-cell embryo (Fig. 1A). At this stage, the cells are round and visibly indistinguishable. The first major cell morphological changes begin as the 8-cell embryo undergoes compaction. Concomitant with a rise in intercellular adhesion, the cells flatten their membranes against each other, maximizing contact and forming a highly packed mass. This process of increased adhesion and embryo compaction occurs ubiquitously during preimplantation development in different mammalian species and is an absolute requirement for embryo viability. This process is very similar in mouse and humans, making the preimplantation mouse embryo an ideal model to study the role of adhesion in cell shape, position, and fate in early mammalian development. In addition, the cells of the mouse embryo are relatively large, facilitating imaging of subcellular processes. Furthermore, there are many available genetic tools that are applicable in the mouse for manipulation of proteins of interest. Pronuclear microinjection of mRNA or DNA is a well-established technique for expression of exogenous proteins and mouse embryos are resilient enough to withstand this process with high efficiency (Fig. 1B). Moreover, thousands of genetically modified animals are now available carrying targeted endogenous genes or expressing various transgenic constructs.

Figure 1 Imaging preimplantation development in the mouse embryo. (A) DIC images showing development of mouse embryo from 1-cell to blastocyst stage. (B) Microinjection of mRNA or DNA into the pronucleus allows visualization of proteins of interest throughout preimplantation development. In the example shown, the membrane is labeled with mCherry and the nucleus is labeled with H2B-GFP. ICM, inner cell mass; TE, trophectoderm.

1.1 Adhesion molecules in the preimplantation mouse embryo


Early studies identified a critical role for calcium-dependent adhesion in embryo compaction, subsequent spatial segregation of the inner cell mass (ICM) and formation of the first differentiated tissue, the trophectoderm (Fleming, Sheth, & Fesenko, 2001). Interfering with adhesion by chelating calcium ions or using antibodies targeting a cell surface glycoprotein decompacted embryos and prevented blastocyst formation (Ducibella & Anderson, 1975; Wales, 1970; Whitten, 1971). In 1981, this cell surface glycoprotein was identified as uvomorulin, now more commonly known as E-cadherin (Hyafil, Babinet, & Jacob, 1981).

Although usually expressed in epithelial cell layers, E-cadherin is also expressed from the very early stages of development. It is initially maternally derived in the oocyte and at the 2-cell stage, de novo E-cadherin zygotic synthesis starts (Vestweber, Gossler, Boller, & Kemler, 1987). Embryos lacking zygotic E-cadherin are preimplantation lethal. They do undergo compaction due to residual maternal E-cadherin but fail to form a blastocyst (Larue, Ohsugi, Hirchenhain, & Kemler, 1994). Using siRNAs to knockdown E-cadherin expression in just half of the embryo prevents those cells from integrating into the compacting embryo (Fig. 2) (Fierro-Gonzalez, White, Silva, & Plachta, 2013). Embryos lacking both maternal and zygotic E-cadherin are unable to compact or form a blastocyst and they appear as loose aggregates of cells (Stephenson, Yamanaka, & Rossant, 2010). Deleting maternal E-cadherin alone delays compaction until the late morula stage but embryos then develop normally due to zygotic E-cadherin expression (De Vries et al., 2004). Adhesion does not develop until the late morula stage in these embryos indicating that although E-cadherin and its binding partners are expressed (Ohsugi et al., 1996; Sefton, Johnson, & Clayton, 1992; Vestweber et al., 1987), they are not required to form functional adhesion complexes at very early stages.

Figure 2 E-cadherin is required for cell–cell adhesion and embryo compaction. (A) Microinjection of one cell at the 2-cell stage results in an embryo expressing a control siRNA and a membrane-Cherry marker in half of its cells. The transgenic cells have normal morphology and integrate into the compacting embryo mass. (B) An siRNA targeting E-cadherin reduces cell–cell adhesion in the transgenic half of the embryo. The nontransgenic cells compact normally but the E-cadherin knockdown cells are very spherical and do not integrate into the embryo mass. (C) Treating the embryo with the DECMA-1 E-cadherin function-blocking antibody reduces adhesion and causes all cells to become very spherical. The embryo does not compact. Scale bar = 10 μm.

E-cadherin is uniformly distributed in the cell membrane until the 8-cell stage when PKC-α-mediated phosphorylation of β-catenin, a key protein regulating E-cadherin intracellular signaling, is thought to activate the compaction process (Fig. 3; Pauken & Capco, 1999). Compaction can be blocked by inhibition of PKC-α and induced early at the 2- and 4-cell stages by PKC-α activation (Ohsugi, Ohsawa, & Semba, 1993; Winkel, Ferguson, Takeichi, & Nuccitelli, 1990). E-cadherin accumulates basolaterally, forming adherens junctions between cells and connecting to the actin cytoskeleton via catenin proteins (Ozawa, Ringwald, & Kemler, 1990). As adhesion initiates, the actin cytoskeleton is reorganized to define the orientation of the first cellular polarity in the embryo (Stephenson et al., 2010).

Figure 3 E-cadherin localization changes during preimplantation development. E-cadherin is distributed throughout the membrane until the late 8-cell stage. Then, it begins to accumulate in cell–cell junctions and is predominantly localized to basolateral regions by the 16-cell stage.

After compaction has occurred, tight junctions begin to assemble at apicolateral cell–cell junctions in a process that requires prior activation of E-cadherin-mediated adhesion (Fleming, McConnell, Johnson, & Stevenson, 1989; Ohsugi, Larue, Schwarz, & Kemler, 1997). The timing of tight junction formation is tightly regulated by staggered expression of the constituent proteins from the 8- to 32-cell stage (Sheth et al., 1997). E-cadherin-mediated adhesion may also stabilize tight junction proteins, preventing their turnover once they are assembled at the membrane (Javed, Fleming, Hay, & Citi, 1993). The close intercellular adhesion at tight junctions then forms a permeability seal between...

Erscheint lt. Verlag 27.2.2015
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
ISBN-10 0-12-407889-3 / 0124078893
ISBN-13 978-0-12-407889-5 / 9780124078895
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 19,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 13,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99