Epigenetics and Dermatology -

Epigenetics and Dermatology (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
520 Seiten
Elsevier Science (Verlag)
978-0-12-801272-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
89,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Epigenetics and Dermatology explores the role of epigenetics in the pathogenesis of autoimmune-related skin diseases and skin cancer. Leading contributors cover common and uncommon skin conditions in which extensive epigenetic research has been done. They explain how environmental exposures (chemicals, drugs, sunlight, diet, stress, smoking, infection, etc.) in all stages of life (from a fetus in-utero to an elderly person) may result in epigenetic changes that lead to development of some skin diseases in life. They also discuss the possibilities of new and emergent epigenetic treatments which are gradually being adopted in management of various skin diseases. Chapters follow a conventional structure, covering fundamental biology of the disease condition, etiology and pathogenesis, diagnosis, commonly available treatments, and epigenetic therapy where applicable.


• Discusses the basic biology of skin diseases and skin cancers induced or aggravated by aberrant epigenetic changes.
• Evaluates how to approach autoimmune-related skin diseases from a therapeutic perspective using the wealth of emergent epigenetic clinical trials.
• Offers a coherent and structured table of contents with basic epigenetic biology followed by discussion of the spectrum of rheumatologic through neoplastic skin diseases, finally ending with a discourse on epigenetic therapy.
Epigenetics and Dermatology explores the role of epigenetics in the pathogenesis of autoimmune-related skin diseases and skin cancer. Leading contributors cover common and uncommon skin conditions in which extensive epigenetic research has been done. They explain how environmental exposures (chemicals, drugs, sunlight, diet, stress, smoking, infection, etc.) in all stages of life (from a fetus in-utero to an elderly person) may result in epigenetic changes that lead to development of some skin diseases in life. They also discuss the possibilities of new and emergent epigenetic treatments which are gradually being adopted in management of various skin diseases. Chapters follow a conventional structure, covering fundamental biology of the disease condition, etiology and pathogenesis, diagnosis, commonly available treatments, and epigenetic therapy where applicable. Discusses the basic biology of skin diseases and skin cancers induced or aggravated by aberrant epigenetic changes Evaluates how to approach autoimmune-related skin diseases from a therapeutic perspective using the wealth of emergent epigenetic clinical trials Offers a coherent and structured table of contents with basic epigenetic biology followed by discussion of the spectrum of rheumatologic through neoplastic skin diseases, finally ending with a discourse on epigenetic therapy

Front Cover 1
Epigenetics and Dermatology 4
Copyright Page 5
Dedication 6
Contents 8
List of Contributors 14
Preface 18
Acknowledgments 20
1. Biological and Historical Aspects of Epigenetics 22
1 Introduction to Epigenetics 24
References 27
2 Laboratory Methods in Epigenetics 28
2.1 Introduction 28
2.2 DNA Methylation Analysis 28
2.2.1 Methods to Distinguish 5-Methylcytosine from Cytosine 29
2.2.1.1 Restriction Endonuclease-Based Analysis 29
2.2.1.1.1 Southern Blot 29
2.2.1.1.2 Methylation-Sensitive Amplified Polymorphism 30
2.2.1.2 Bisulfite Conversion Technique and Derivatives 30
2.2.1.2.1 Bisulfite Sequencing PCR 30
2.2.1.2.2 Pyrosequencing 30
2.2.1.2.3 Combined Bisulfite and Restriction Analysis 31
2.2.1.2.4 Methylation-Sensitive Single-Nucleotide Primer Extension and SnuPE Ion Pair Reversed-Phase High Performance Liqui... 31
2.2.1.2.5 Methylation-Sensitive Melting Curve Analysis 31
2.2.1.2.6 Methylation-Sensitive High-Resolution Melting 32
2.2.1.2.7 MethyLight 32
2.2.1.3 Immunoprecipitation-Based Methods 32
2.2.1.3.1 Methylated-CpG Island Recovery Assay 33
2.2.1.3.2 Methyl-Binding-PCR 33
2.2.1.4 Mass Spectrometry-Based Methods 33
2.2.1.4.1 MALDI-TOF Mass Spectrometry with Base-Specific Cleavage 34
2.2.1.4.2 MALDI-TOF Mass Spectrometry with Primer Extension 34
2.2.2 Genome-Scale DNA Methylation Analysis 34
2.2.2.1 Microarray-Based Analysis of DNA Methylation Changes 35
2.2.2.1.1 Sample Preparation 35
2.2.2.1.2 Microarray Used in DNA Methylation Profiling 35
2.2.2.2 Next-Generation Sequencing Techniques 37
2.3 Techniques Used for 5hmC Mark Detection 37
2.4 Histone Modification Analysis 40
2.4.1 Chromatin Immunoprecipitation 40
2.4.2 ChIP-on-Chip 41
2.4.3 ChIP-seq 42
2.4.3.1 Workflow of ChIP-seq 42
2.4.3.2 Analysis Pipeline of ChIP-seq Data 42
2.4.3.2.1 Read Aligner 43
2.4.3.2.2 Peak Calling 43
2.4.3.2.3 Motif Finding 43
2.4.3.3 Advantages of ChIP-seq 44
2.4.4 Challenges for Histone Modification Analysis 45
2.5 miRNA Analysis 46
2.5.1 miRNA Detection 47
2.5.1.1 Microarray 47
2.5.1.2 Next-Generation Sequencing 47
2.5.1.3 RT-PCR 48
2.5.1.4 Northern Blot Analysis 48
2.5.1.5 Others 48
2.5.2 Target Prediction 49
2.5.2.1 Target Scan 49
2.5.2.2 PicTar 50
2.5.2.3 DIANA-microT 50
2.5.2.4 Others 50
2.5.3 Target Validation and Functional Analysis 51
2.5.3.1 Luciferase Reporter Assays 51
2.5.3.2 Gain-of-Function and Loss-of-Function Experiments 51
2.6 Conclusion 51
List of Abbreviations 52
References 53
3 Keratinocyte Differentiation and Epigenetics 58
3.1 Introduction 58
3.2 Gene Expression in Keratinocyte Differentiation 60
3.3 Epigenetic Modulation in Keratinocyte Differentiation 62
3.4 Epigenetics and Skin Diseases 66
3.5 Conclusion 69
References 70
4 Epigenetics and Fibrosis: Lessons, Challenges, and Windows of Opportunity 74
4.1 Introduction 74
4.2 Incidence and Prevalence of Fibrosis 75
4.3 Biology of Epigenetics 77
4.3.1 DNA Methylation 77
4.3.2 Histone Modifications 78
4.4 Epigenetics and Fibrosis 79
4.4.1 Epigenetics and Lung Fibrosis 79
4.4.1.1 DNA Methylation and Lung Fibrosis 79
4.4.1.2 Histone Modifications and Lung Fibrosis 81
4.4.2 Epigenetics and Liver Fibrosis 82
4.4.2.1 DNA Methylation and Liver Fibrosis 82
4.4.2.2 Histone Modifications and Liver Fibrosis 83
4.4.3 Epigenetics and Systemic Sclerosis (Scleroderma) 84
4.4.3.1 DNA Methylation and SSc 84
4.4.3.2 Histone Modifications and SSc 86
4.5 Autoimmunity and Fibrosis 86
4.6 Conclusion 87
Acknowledgments 88
List of Abbreviations 88
References 88
5 Epigenetic Modulation of Hair Follicle Stem Cells 96
5.1 Introduction 96
5.1.1 Identification of HF-SCs 97
5.1.2 Characteristics of HF-SCs 97
5.1.3 Applications of HF-SCs 98
5.2 Epigenetic Regulation 98
5.2.1 DNA Modification 99
5.2.2 Histone Modifications 100
5.2.3 MicroRNAs 101
5.3 Prospects 102
References 103
6 Epigenetics and the Regulation of Inflammation 106
6.1 Introduction 106
6.2 Epigenetic Mechanisms During T-Cell Differentiation 108
6.2.1 CD4+ T-Cell Phenotype Determination 110
6.2.2 Generation of CD3+CD4-CD8- DN T Cells 115
6.3 Epigenetic Regulation of the Immune-Modulatory Cytokine IL-10 116
6.4 DNA Contraction During Antigen Receptor Arrangement in T and B Cells 119
6.5 Posttranscriptional Regulation of Inflammation Through miRNAs 122
6.6 The X Chromosome and Immune Regulation 123
6.7 Environmentally Induced Epigenetic Disturbances Impair Immune Regulation 124
6.8 Epigenetic Modifications Function as Autoantigens in Autoimmune Disease 125
6.9 Conclusion 126
References 127
7 Malignant Transformation and Epigenetics 134
7.1 Introduction 134
7.2 Regulation of DNA Methylation 136
7.2.1 Animal Studies Involving Modulation of DNA Methylation 136
7.2.2 Human Cancer and DNA Methylation 138
7.2.3 DNA Methyltransferase DNMT3A 138
7.2.4 TET Proteins and Demethylation of DNA 139
7.3 Histone Modifications 140
7.3.1 MLL, Histone 3 Lysine 4 Methyltransferases 143
7.3.2 EZH2, Histone 3 Lysine 27 Methyltransferases 143
7.3.3 Other Histone Methyltransferases and Demethylases 144
7.4 SNF Factors of Chromatin Remodeling 145
7.4.1 SNF Factor SNF5 146
7.4.2 SNF Factor BRG1 (SMARCA4) 146
7.5 Epigenetic Therapy for Cancer 147
7.6 Conclusion 148
Acknowledgments 149
References 149
8 Epigenetic Mechanisms of Sirtuins in Dermatology 158
8.1 Introduction 158
8.2 Background 159
8.2.1 A Brief History 159
8.2.2 Sirtuins Interact with Substrates via Enzymatic Activity 159
8.2.3 Sirtuin Enzyme Reactions 161
8.3 Epigenetic Mechanisms of Sirtuin Function 161
8.3.1 Heritability of Epigenetic Changes 162
8.4 Sirtuin Modification of Chromatin Structure and Function Impacts Gene Expression 162
8.4.1 Histone Modification 162
8.4.2 DNA Methylation 166
8.4.3 Sirtuin Interaction with Nonhistone Substrates 166
8.5 Sirtuin Function in Cellular Processes Common to Skin Diseases 167
8.5.1 Sirtuins in Apoptosis 167
8.5.2 Cell Cycle Regulation in Cell Proliferation 168
8.6 Sirtuins in Skin Aging 169
8.6.1 Telomere Maintenance in Skin Aging 170
8.6.2 Sirtuins in DNA Repair Signaling 170
8.6.3 Sirtuins in Oxidative Stress 171
8.6.4 Sirtuin Modulation of Apoptosis in Photoaging 172
8.6.5 Inflammation in Photoaging 173
8.7 Sirtuins in Skin Inflammation, Inflammatory Diseases, and Autoimmune Diseases 174
8.8 Sirtuins in Hyperproliferative Skin Disease 176
8.9 Sirtuins in Skin Repair and Scarring 176
8.10 Sirtuins in Skin Cancer 177
8.11 Modulators of Sirtuin Function 178
8.11.1 Overview of Sirtuin Modulators and Related Limitations 178
8.11.2 Modulation of Sirtuin Activity in Skin Cancer 182
8.12 Conclusion 187
List of Abbreviations 187
References 188
9 MicroRNAs in Skin Diseases 198
9.1 Introduction 198
9.2 MicroRNAs 198
9.2.1 miRNA Discovery 198
9.2.2 miRNA Biogenesis 199
9.2.3 miRNA Function 200
9.2.4 miRNAs in Normal Skin 201
9.3 miRNAs in Inflammatory Skin Diseases 202
9.3.1 Psoriasis 202
9.3.2 Atopic Dermatitis 206
9.3.3 Allergic Contact Dermatitis 207
9.3.4 Connective Tissue Diseases 207
9.4 miRNAs in Malignant Skin Diseases 208
9.4.1 Basal Cell Carcinoma 208
9.4.2 Cutaneous Squamous Cell Carcinoma 209
9.4.3 Malignant Melanoma 211
9.4.4 Cutaneous T-Cell Lymphoma 213
9.5 The Clinical Applications of miRNAs 215
9.5.1 miRNAs as Biomarkers 215
9.5.2 Importance of miRNAs in Skin Diseases 216
9.6 Conclusion 217
List of Abbreviations 219
References 220
2. Immunologic Skin Diseases 228
10 Systemic Lupus Erythematosus 230
10.1 Introduction 230
10.2 Background 230
10.3 DNA Methylation, Gene Expression, and T-Cell Function 231
10.3.1 DNA Methylation and T-Cell Gene Expression 233
10.3.2 Interactions of Experimentally Demethylated T Cells with Macrophages and B Cells 234
10.4 DNA Methylation and Lupus 235
10.4.1 T-Cell DNA Methylation and Drug-Induced Lupus 235
10.4.2 T-Cell DNA Methylation, Gene Expression, and Idiopathic Lupus 236
10.4.3 Mechanisms of T-Cell DNA Demethylation in Lupus 237
10.5 Environmental Causes of T-Cell DNA Demethylation 238
10.5.1 Oxidative Stress 238
10.5.2 Diet 239
10.6 Genetic/Epigenetic Interactions in Lupus 240
10.6.1 DNA Methylation, Lupus, and Gender 240
10.6.2 Age, Genetic Risk, DNA Methylation, and Lupus 241
10.7 Histone Modifications and Lupus 241
10.8 mirnas and Lupus 242
10.9 Summary/Conclusions 242
List of Abbreviations 243
References 243
11 Epigenetics in Psoriasis 248
11.1 Epidemiology of Psoriasis 248
11.2 Environmental Factors of Psoriasis 249
11.2.1 UV Irradiation 249
11.2.2 Smoking Habits 250
11.2.3 Psoriasis-Related Comorbidities 250
11.3 Epigenetics and Genetics in Psoriasis 251
11.3.1 Epigenetics and Pathogenesis of Psoriasis 251
11.4 DNA Methylation 252
11.4.1 Epigenomic Profiling in Psoriasis 252
11.4.2 DNA Methylation Profiling in Psoriasis 253
11.4.3 DNA Methylation of Specific Genes in Psoriasis 254
11.5 Histone Modification 256
11.5.1 Histone Modification in Psoriasis 257
11.6 Noncoding RNAs 258
11.6.1 miR-203 in Psoriasis 259
11.6.2 miR-146a in Psoriasis 259
11.6.3 miR-125b in Psoriasis 260
11.6.4 miR-21 in Psoriasis 261
11.6.5 Other miRNAs in Psoriasis 261
11.7 Conclusion 262
List of Abbreviations 263
References 263
12 Epigenetics and Systemic Sclerosis 270
12.1 Introduction 270
12.2 Pathogenesis of SSc 271
12.3 Genetic Factors in SSc 273
12.4 Epigenetic Aberrancies in SSc 274
12.5 What Might Trigger Epigenetic Dysregulation in SSc? 285
12.6 Clinical Relevance of Epigenetic Aberrancies in SSc 287
12.7 Conclusion 288
References 289
13 Epigenetics of Allergic and Inflammatory Skin Diseases 296
13.1 Introduction 296
13.2 Atopic Dermatitis 296
13.2.1 Epidemiology of Atopic Dermatitis 297
13.2.2 Genetics of Atopic Dermatitis 298
13.2.3 Epigenetics of Atopic Dermatitis 300
13.2.4 Pathogenesis of Atopic Dermatitis 302
13.2.5 Phenotypes and Diagnosis of Atopic Dermatitis 304
13.2.6 Biomarkers of Atopic Dermatitis 306
13.2.7 Associated Comorbidities of Atopic Dermatitis 306
13.2.8 Treatment of Atopic Dermatitis 307
13.3 Psoriasis 308
13.3.1 Epidemiology of Psoriasis 308
13.3.2 Genetics of Psoriasis 309
13.3.3 Epigenetics of Psoriasis 310
13.3.4 Pathogenesis of Psoriasis 313
13.3.5 Phenotypes and Diagnosis of Psoriasis 314
13.3.6 Treatment of Psoriasis 314
13.4 Mastocytosis 315
13.4.1 Epidemiology of Mastocytosis 315
13.4.2 Genetics of Mastocytosis 315
13.4.3 Epigenetics of Mastocytosis 316
13.4.4 Phenotypes of Mastocytosis 316
13.4.5 Diagnosis of Mastocytosis 317
13.4.6 Biomarkers of Mastocytosis 318
13.5 Urticaria 318
13.5.1 Epidemiology of Urticaria 319
13.5.2 Epigenetics of Urticaria 319
13.5.3 Pathogenesis of Urticaria 319
13.5.4 Phenotypes of Urticaria 319
13.5.5 Diagnosis of Urticaria 320
13.6 Conclusion 321
List of Abbreviations 322
References 322
14 Epigenetics and Other Autoimmune Skin Diseases 328
14.1 Epigenetics in Vitiligo 329
14.2 Epigenetics in Alopecia Areata 335
14.3 Epigenetics in Dermatomyositis 337
14.4 Epigenetics in Pemphigus 339
14.5 Conclusion 342
References 342
3. Nonimmunologic Skin Diseases 348
15 Epigenetics and Infectious Skin Disease 350
15.1 Herpes Simplex Viruses 350
15.1.1 KSHV (HHV8) 352
15.2 HSV1 and -2 and VZV 353
15.3 Human Papilloma Virus 354
15.4 Conclusion 356
List of Abbreviations 356
References 357
16 Epigenetics of Melanoma 360
16.1 Introduction to the Disease Condition 360
16.1.1 Incidence and Etiology of Melanoma 360
16.1.2 Origin and Heritability of Melanoma 361
16.2 Diagnosis of Melanoma 361
16.2.1 Melanoma Progression and Subtypes 361
16.3 Etiology and Pathogenesis of Melanoma 362
16.3.1 Genetic Alterations of Melanoma 362
16.3.1.1 Sporadic Mutations 362
16.3.1.2 Germ Line Mutations 363
16.3.2 Epigenetic Alterations of Melanoma 364
16.3.2.1 DNA Hypomethylation 364
16.3.2.2 DNA Hypermethylation 365
16.3.2.3 Histone Posttranslational Modifications and Chromatin Remodeling 368
16.3.2.4 Polycomb Group Proteins 370
16.3.2.5 Noncoding RNAs (miRNAs) 370
16.4 Common Treatments and Epigenetic Therapy 372
16.4.1 Genetic Drug Treatment in CMM 372
16.4.2 Epigenetic Drug Treatment in CMM 373
16.4.2.1 Targeting DNA Methylation 373
16.4.2.2 Targeting Histone Modifications 374
16.5 Conclusion 375
List of Abbreviations 375
References 376
17 Cutaneous T-Cell Lymphoma: Mycosis Fungoides and Sézary Syndrome 384
17.1 Introduction 384
17.2 MF/SS Clinical Overview 385
17.3 Molecular Immunopathology of MF/SS 386
17.4 Molecular Gene Expression Differences in MF/SS 387
17.4.1 Protein Markers in MF/SS 388
17.4.2 Novel Genes Expressed in MF/SS 388
17.4.3 Noncoding RNAs in MF/SS 389
17.5 Potential Genetic and Epigenetic Mechanisms in MF/SS 390
17.5.1 DNA Methylation 390
17.5.2 DNA Methylation and Cancer 391
17.6 Summary 393
Acknowledgments 393
References 394
18 Epigenetics and Aging 400
18.1 Introduction 400
18.2 Senescence and Aging 402
18.3 Changes Associated with Aging Skin 402
18.4 Epigenetic Changes in Cellular and Structural Components of Skin 403
18.4.1 Tet Methylcytosine Dioxygenase 2 (TET2) and Epidermis 404
18.4.2 Regulation of Dimethylarginine Dimethylaminohydrolase 2 (DDAH2) and Keratinocytes 406
18.4.3 Collagen 406
18.4.4 Melanocytes 407
18.4.5 Mesenchymal Stem Cells and Dermal Fibroblasts 407
18.5 Photoaging of Skin 408
18.6 DNA Methylation and Overall Aging in Skin 409
18.7 Chromatin and Aging Skin 410
18.7.1 Histone Methylation 411
18.7.1.1 INK4 Loci 411
18.7.1.2 P53 and Rb 412
18.7.1.3 p63 413
18.7.2 Histone Acetylation 413
18.7.3 Polycomb Complex Group 414
18.8 MicroRNAs 415
18.9 Reversing Aging 417
18.10 Epigenetic Therapeutics in Prevention or Treatment of Aged Skin 418
18.11 Conclusion 419
Glossary 420
List of Abbreviations 420
References 421
4. Applications of Epigenetics 428
19 Targeting Epigenetics in the Development of New Diagnostic Applications—Lessons from Autoimmune Diseases 430
19.1 Introduction 430
19.2 The Molecular Basis of Epigenetics 432
19.2.1 DNA Methylation 432
19.2.2 Histone Modifications 434
19.3 Epigenetic Perturbations in Autoimmune Diseases—Potential Targets for the Development of Diagnostic Markers and Novel ... 437
19.3.1 Systemic Lupus Erythematosus 437
19.3.2 Rheumatoid Arthritis 441
19.3.3 Multiple Sclerosis 444
19.4 Clinical Applications 445
19.4.1 Development of Diagnostic Tools 446
19.4.2 Treatment of Diseases 447
19.5 Future Perspectives 449
19.6 Take-Home Messages 451
List of Abbreviations 452
References 453
20 Principles of Epigenetic Treatment 464
20.1 Introduction 464
20.2 DNA Methylation 465
20.2.1 Histone Modification 465
20.2.2 Histone Acetylation Enzymes/Histone Deacetylation Enzymes 466
20.2.3 Histone Deacetylation Enzyme Inhibitors 467
20.2.4 Histone Methyltransferases/Histone Demethylases 467
20.2.5 The Use of Epigenetic Therapy in Cancer 468
20.2.6 Epigenetic Therapy in Autoimmune Diseases 470
20.3 Epigenetic Therapy in Dermatology 474
20.3.1 Epigenetics in Neurological Diseases 474
20.3.2 Epigenetics in Human Imprinting Disorders 477
20.3.3 Epigenetics in Allergy and Allergic Dermatological Diseases 477
20.3.4 Epigenetics in Other Diseases (Cardiovascular, Obesity, Renal Disease) 478
20.4 Discussion 480
20.5 Conclusion 481
References 482
21 How the Environment Influences Epigenetics, DNA Methylation, and Autoimmune Diseases 488
21.1 Introduction 488
21.2 Environmental Factors 490
21.2.1 Infectious Agents 490
21.2.2 Drugs and Diet 490
21.2.3 Respiratory Exposures 491
21.2.4 Other Factors 492
21.3 Epigenetics 492
21.3.1 DNA Methylation and Histone Modifications 492
21.3.2 Epigenetics and Environmental Factors 494
21.3.3 Epigenetics and Autoimmune Diseases 494
21.4 Mechanism of Action 497
21.4.1 DNMTs and Environmental Factors 498
21.4.2 DNA Demethylation and Environmental Factors 500
21.4.3 SAM and Environmental Factors 500
21.5 Conclusion 501
References 502
Index 508

List of Contributors


Nezam Altorok,     Division of Rheumatology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH

Jack L. Arbiser

Department of Dermatology, Emory School of Medicine, Winship Cancer Institute, Atlanta, GA

Department of Dermatology, Atlanta Veterans Affairs Medical Center, Decatur, GA

Michael Y. Bonner,     Department of Dermatology, Emory School of Medicine, Winship Cancer Institute, Atlanta, GA

Wesley H. Brooks,     Department of Chemistry, University of South Florida, Tampa, FL

Christopher Chang,     Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA

Jessica Charlet,     Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA

Frederic L. Chedin,     Department of Molecular and Cellular Biology, University of California, Davis, CA

Hui-Min Chen

Department of Molecular and Cellular Biology, University of California, Davis, CA

Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA

Suresh de Silva,     Center for Retrovirology Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio

Pierre Gazeau

EA2216, INSERM ESPRI, ERI29, European University of Brittany and Brest University, Brest, France

SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology,” and “Réseau Épigénétique du Cancéropole Grand Ouest,” France

Laboratory of Immunology and Immunotherapy, CHU Morvan, Brest, France

M. Eric Gershwin,     Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA

Yixing Han,     Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD

Christian M. Hedrich,     Pediatric Rheumatology and Immunology, Children’s Hospital Dresden, University Medical Center “Carl Gustav Carus,” Technische Universität Dresden, Dresden, Germany

Yu-Ping Hsiao

Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan

Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan

Jared Jagdeo

Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY

Department of Dermatology, University of California at Davis, Sacramento, CA

Dermatology Service, Sacramento VA Medical Center, Mather, CA

Yi-Ju Lai,     Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Christelle Le Dantec

EA2216, INSERM ESPRI, ERI29, European University of Brittany and Brest University, Brest, France

SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology,” and “Réseau Épigénétique du Cancéropole Grand Ouest,” France

Chih-Hung Lee,     Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan

Jeung-Hoon Lee,     Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, South Korea

Yungling Leo Lee

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan

Patrick S.C. Leung,     Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA

Gangning Liang,     Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA

Jieyue Liao,     Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China

Bin Liu

Department of Rheumatology and Immunology, The Affiliated Hospital of Medical College Qingdao University, Qingdao City, Shandong Province, PR China

Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA

Fu-Tong Liu,     Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Yu Liu,     Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China

Alexander Lo,     SUNY Downstate College of Medicine, Brooklyn, NY

Marianne B. Løvendorf,     Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

Qianjin Lu,     Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China

Anjali Mishra,     Comprehensive Cancer Center and Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio

Kathrin Muegge

Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD

Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD

Sreya Mukherjee,     Department of Chemistry, University of South Florida, Tampa, FL

Nina Poliak,     Division of Allergy and Immunology, Nemours/AI duPont Hospital for Children, Wilmington, DE

Pierluigi Porcu,     Comprehensive Cancer Center and Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio

Jianke Ren,     Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD

Yves Renaudineau

EA2216, INSERM ESPRI, ERI29, European University of Brittany and Brest University, Brest, France

SFR ScInBioS, LabEx IGO “Immunotherapy Graft Oncology,” and “Réseau Épigénétique du Cancéropole Grand Ouest,” France

Laboratory of Immunology and Immunotherapy, CHU Morvan, Brest, France

Bruce C. Richardson,     Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI

Sabita N. Saldanha,     Department of Biological Sciences, Alabama State University, Montgomery, AL

Amr H. Sawalha

Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI

Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI

Melissa Serravallo,     Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY

Lone Skov,     Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

Minoru Terashima,     Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD

Shannon Doyle Tiedeken,     Department of Pediatrics, Thomas Jefferson University, Nemours/A.I. duPont Hospital for Children, Wilmington, DE

Kuan-Yen Tung

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan

Xin Sheng Wang,     Department of Urology, The Affiliated Hospital of Medical College Qingdao University, Qingdao City, Shandong Province, PR China

Louis Patrick Watanabe,     Department of Biology, University of Alabama at Birmingham, Birmingham, AL

Henry K. Wong,     Comprehensive Cancer Center and Division of Dermatology,...

Erscheint lt. Verlag 16.2.2015
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Dermatologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Studium 2. Studienabschnitt (Klinik) Humangenetik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zoologie
Technik
ISBN-10 0-12-801272-2 / 0128012722
ISBN-13 978-0-12-801272-7 / 9780128012727
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 8,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99