Ismo V. Lindell is a Professor Emeritus in the Department of Radio Science and Engineering, in the School of Electrical Engineering at the Aalto University, Finland. Dr. Lindell has received many honors in the course of his career, including his recognition as an IEEE Fellow in 1990 for his contributions to electromagnetic theory and for the development of education in electromagnetics in Finland. Dr. Lindell has authored or co-authored 3 books in English, authored or co-authored 10 books in Finnish, and published several hundred articles in professional journals, conference proceedings, and contributed chapters to other books.
1 Multivectors and Multiforms 11
1.1 Vectors and one-forms 11
1.2 Bivectors and two-forms 13
1.3 Multivectors and multiforms 17
1.4 Some properties of bivectors and two-forms 23
2 Dyadics 29
2.1 Mapping vectors and one-forms 29
2.2 Mapping multivectors and multiforms 32
2.3 Dyadic identities 38
2.4 Rank of dyadic 44
2.5 Eigenproblems 46
2.6 Metric dyadic 50
3 Bidyadics 57
3.1 Cayley-Hamilton equation 58
3.2 Bidyadic eigenproblem 62
3.3 Hehl-Obukhov decomposition 64
3.4 Example: simple antisymmetric bidyadic 66
3.5 Inverse rules for bidyadics 68
4 Special Dyadics and Bidyadics 79
4.1 Orthogonality conditions 79
4.2 Nilpotent dyadics and bidyadics 81
4.3 Projection dyadics and bidyadics 82
4.4 Unipotent dyadics and bidyadics 85
4.5 Almost-complex (AC) dyadic 86
4.6 Almost-complex bidyadics 90
4.7 Modified closure relation 91
5 Electromagnetic Fields 99
5.1 Field equations 99
5.2 Medium equations 103
5.3 Basic classes of media 107
5.4 Interfaces and boundaries 112
5.5 Power and energy 117
5.6 Plane waves 122
6 Transformation of Fields and Media 133
6.1 A_ne transformation 133
6.2 Duality transformation 137
6.3 Transformation of boundary conditions 141
6.4 Reciprocity transformation 143
6.5 Conformal transformation 148
7 Basic Classes of Electromagnetic Media 157
7.1 Gibbsian isotropy 157
7.2 The axion medium 165
7.3 Skewon-axion media 168
7.4 Extended skewon-axion media 177
8 Quadratic Media 181
8.1 P media and Q media 181
8.2 Transformations 183
8.3 Spatial expansions 184
8.4 Plane waves 188
8.5 P-axion and Q-axion media 191
8.6 Extended Q media 193
8.7 Extended P media 199
9 Media Defined by Bidyadic Equations 205
9.1 Quadratic equation 206
9.2 Cubic equation 214
9.3 Bi-quadratic equation 218
10 Media Defined by Plane-Wave Properties 225
10.1 Media with no dispersion equation (NDE media) 225
10.2 Decomposable media (DC media) 233
A Solutions to Problems 253
B Transformation to Gibbsian Formalism 339
C Multivector and Dyadic Identities 343
Erscheint lt. Verlag | 18.2.2015 |
---|---|
Reihe/Serie | IEEE/OUP Series on Electromagnetic Wave Theory (formerly IEEE only), Series Editor: Donald G. Dudley. |
IEEE/OUP Series on Electromagnetic Wave Theory (formerly IEEE only), Series Editor: Donald G. Dudley. | IEEE Press Series on Electromagnetic Wave Theory |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | differential forms in electromagnetism • dyadic algebra • Electrical & Electronics Engineering • Electrical Engineering • electromagnetic media • Electromagnetic theory • Elektromagnetismus • Elektrotechnik u. Elektronik • foundations of classical electrodynamics • IEEE • ieee book • ieee series • Ismo Lindell • Ismo V. Lindell • magnetic materials • magnetische Materialien • Materials Science • Materialwissenschaften • Mathematical & Computational Physics • Mathematische Physik • metamaterials • metasurfaces • Physics • Physik |
ISBN-10 | 1-119-05240-8 / 1119052408 |
ISBN-13 | 978-1-119-05240-1 / 9781119052401 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich