Progress in Medicinal Chemistry

Progress in Medicinal Chemistry (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
314 Seiten
Elsevier Science (Verlag)
978-0-444-63485-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
143,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Progress in Medicinal Chemistry provides a review of eclectic developments in medicinal chemistry. This volume continues in the serial's tradition of providing an insight into the skills required of the modern medicinal chemist; in particular, the use of an appropriate selection of the wide range of tools now available to solve key scientific problems, including g-secretase modulators, P2X7 antagonists as therapeutic agents for CNS disorders, N-type calcium channel modulators for the treatment of pain, and more.

    • Extended timely reviews of topics in medicinal chemistry
    • Targets and technologies relevant to the discovery of tomorrow's drugs.
    • Analyses of successful drug discovery programmes

    Progress in Medicinal Chemistry provides a review of eclectic developments in medicinal chemistry. This volume includes chapters covering recent advances in cancer therapeutics, fluorine in medicinal chemistry, a perspective on the next generation of antibacterial agents derived by manipulation of natural products, a new era for Chagas Disease drug discovery? and imaging in drug development. Extended timely reviews of topics in medicinal chemistry Targets and technologies relevant to the discovery of tomorrow's drugs Analyses of successful drug discovery programmes

    Front Cover 1
    Progress in Medicinal Chemistry 4
    Copyright 5
    Contents 6
    Contributors 8
    Preface 10
    Chapter 1: Recent Advances in Cancer Therapeutics 14
    1. Introduction 14
    2. Chaperone Inhibitors 15
    3. Kinase Inhibitors 25
    3.1. Introduction 25
    3.2. Vemurafenib-An Inhibitor Targeting a Mutated Kinase 36
    3.3. Ibrutinib-A Covalent, Irreversible Inhibitor 39
    3.4. Tumour Resistance to Kinase Inhibitors 43
    4. HDAC Inhibitors 45
    4.1. Introduction to Histone Deacetylases 45
    4.2. Histone Deacetylase Inhibitors 46
    4.2.1. Biological Activity 47
    4.2.2. Hydroxamic Acids 49
    4.2.3. Cyclic Tetrapeptides 51
    4.2.4. Benzamides 52
    4.2.5. Aliphatic Acids 53
    4.2.6. HDAC Class-Selective Inhibitors 53
    4.2.7. Histone Deacetylase Inhibitors as Part of Single Agent Therapies 54
    4.2.8. Histone Deacetylase Inhibitors as Part of Combinatorial Therapies 54
    5. Inhibitors of Protein-Protein Interactions (PPIs) 54
    5.1. Background 54
    5.2. BCL-2/BH3-Domain Small-Molecule Inhibitors 55
    5.3. Inhibiting P53/MDM2 Interaction 59
    5.4. Rapalogs as Allosteric PPI Inhibitors 62
    References 67
    Chapter 2: Fluorine in Medicinal Chemistry 78
    1. Introduction 79
    2. Survey of Fluorine Chemotypes in Marketed Drugs 80
    3. Impact of Fluorine on Lipophilicity 82
    3.1. Aromatic Systems 82
    3.2. Aliphatic Systems 84
    4. Impact of Fluorine on pKa 86
    4.1. pKa Modulation and Brain Penetration 91
    4.2. pKa Modulation and Cell Potency 92
    4.3. pKa Modulation and Reducing hERG Activity 93
    5. Impact of Fluorine on Metabolism 96
    5.1. Aromatic Ring Oxidation 96
    5.2. Aliphatic Oxidation 99
    6. Metabolism to Toxic Metabolites 101
    7. Fluorine Interactions in Proteins 104
    8. Conformational Influences of Fluorine 107
    8.1. Influence on Geometry at Carbon 107
    8.2. Charge-Dipole Interactions 109
    8.3. Hyperconjugation 110
    8.4. Dipole-Dipole Interactions 113
    9. Marketed Drug Case Studies 114
    9.1. Ezetimibe (Zetia TM) 114
    9.2. Celecoxib (Celebrex TM) 116
    9.3. Sitagliptin (Januvia TM) 118
    9.3.1. Impact of Fluorine on Pharmacology Profile 119
    9.3.2. Contribution of Fluorine to Pharmacokinetic Profile 120
    9.3.3. Structural Aspects 123
    9.3.4. Contribution of Fluorine to Safety Profile 125
    9.4. Fluconazole (Diflucan TM) and Voriconazole (Vfend TM) 125
    9.5. Fluoroquinolones 128
    9.6. Fluticasone Propionate (Flovent TM, Flixotide TM) 131
    9.6.1. Structural Aspects 133
    9.7. Aprepitant (Emend TM) 135
    10. Summary and Future Outlook 138
    References 139
    Chapter 3: A Perspective on the Next Generation of Antibacterial Agents Derived by Manipulation of Natural Products 148
    1. Introduction 148
    2. Glycopeptides 150
    3. Tetracyclines 156
    4. Aminoglycosides 163
    5. Ketolides 170
    6. Thiazolyl Peptides 174
    7. Pleuromutilins 179
    8. Polymyxins 184
    9. Conclusion 191
    References 191
    Chapter 4: A New Era for Chagas Disease Drug Discovery? 198
    1. Introduction 198
    2. Benznidazole as Historic Anti-Chagasic Chemotherapy 200
    3. CYP51 as a Drug Target for T. cruzi Growth Inhibition 202
    4. Clinical Trials 204
    5. Evolution of Screening Cascades 209
    6. Compound Landscape for Chagas Disease Chemotherapies 214
    6.1. T. cruzi CYP51 Inhibitors 214
    6.2. T. cruzi CYP51 Inhibitors in Abundance? 217
    6.3. Other Points of Intervention in the Sterol Biosynthesis Pathway 219
    6.4. Is There a Future for Nitro Heterocycles? 220
    6.4.1. Fexinidazole 220
    6.4.2. Other Nitro Heterocycles 221
    6.5. Compounds from Phenotypic Screens Without Target Information 222
    6.6. Established Drug Targets 225
    6.7. Emerging Drug Targets 227
    6.7.1. Sirtuins 227
    6.7.2. UDP-Galctopyranose Mutase 228
    6.7.3. Phosphofructokinase 229
    6.7.4. N-myristoyltransferase 229
    6.7.5. Carbonic Anhydrase 229
    6.8. Drug Re-purposing Efforts 230
    7. Summary 233
    References 234
    Chapter 5: Imaging in Drug Development 244
    1. Introduction 244
    2. Magnetic Resonance Imaging 246
    2.1. Use of MRI in the Clinic 247
    2.2. MRI in Drug Development 249
    2.2.1. Oncology 249
    2.2.1.1. Dynamic Contrast Enhancement 249
    2.2.1.2. Diffusion Weighted Imaging 250
    2.2.2. Central Nervous System 250
    2.2.2.1. Functional MRI 251
    3. Nuclear Medicine Imaging 252
    3.1. Single-Photon Emission Computed Tomography 252
    3.1.1. Technetium-99m Tracers 253
    3.1.2. Indium-111 Tracers 255
    3.1.3. Iodine-123 Tracers 255
    3.1.4. Applications of SPECT to Translational Medicine 257
    3.2. Positron Emission Tomography 259
    3.2.1. Carbon-11 Tracers 260
    3.2.2. Fluorine-18 Tracers 263
    3.2.2.1. Preparation of [18F]Fluoroalkanes 265
    3.2.2.2. Preparation of [18F]Fluoroarenes 267
    3.2.2.3. Labelling of Peptides and Proteins with Fluorine-18 271
    3.2.3. Iodine-124 Tracers 274
    3.2.4. Zirconium-89 Tracers 277
    3.2.5. Copper-64 Tracers 278
    3.2.6. Gallium-68 Tracers 280
    3.2.7. Application of PET to Translational Medicine 281
    4. Summary and Future Prospects 284
    References 285
    Subject Index 294
    Cumulative Index of Authors for Volumes 1–54 302
    Cumulative Index of Subjects for Volumes 1–54 308

    Chapter One

    Recent Advances in Cancer Therapeutics


    Nicola Chessum; Keith Jones; Elisa Pasqua; Michael Tucker    Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom

    Abstract


    In the past 20 years, cancer therapeutics has undergone a paradigm shift away from the traditional cytotoxic drugs towards the targeting of proteins intimately involved in driving the cancer phenotype. The poster child for this alternative approach to the treatment of cancer is imatinib, a small-molecule kinase inhibitor designed to target chronic myeloid leukaemia driven by the BCR–ABL translocation in a defined patient population. The improvement in survival achieved by treatment of this patient cohort with imatinib is impressive. Thus, the aim is to provide efficacy but with low toxicity. The role of the medicinal chemist in oncology drug discovery is now closely aligned with the role in most other therapeutic areas with high-throughput and/or fragment-based screening, structure-based design, selectivity, pharmacokinetic optimisation and pharmacodynamic biomarker modulation, all playing a familiar part in the process.

    In this chapter, we selected four areas in which compounds are either approved drugs or in clinical trials. These are chaperone inhibitors, kinase inhibitors, histone deacetylase inhibitors and inhibitors of protein–protein interactions. Even within these areas, we have been selective, particularly for kinase inhibitors, and our aim has been to exemplify newer approaches and novel aspects of medicinal chemistry.

    Keywords

    Cancer therapeutics

    Personalised medicine

    Chaperones

    Kinase inhibitors

    Protein–protein interactions

    Histone deacetylases

    Epigenetics

    1 Introduction


    In the past 20 years, cancer therapeutics has undergone a paradigm shift away from the traditional cytotoxic drugs towards the targeting of proteins intimately involved in driving the cancer phenotype [1]. The poster child for this alternative approach to the treatment of cancer is imatinib, a small-molecule kinase inhibitor designed to target chronic myeloid leukaemia driven by the BCR–ABL translocation in a defined patient population [2]. The improvement in survival achieved by treatment of this patient cohort with imatinib is impressive. Thus, the aim is to provide efficacy but with low toxicity. The role of the medicinal chemist in oncology drug discovery is now closely aligned with the role in most other therapeutic areas with high-throughput and/or fragment-based screening, structure-based design, selectivity, pharmacokinetic optimisation and pharmacodynamic biomarker modulation, all playing a familiar part in the process.

    In a short review of this nature covering such a large and active field, we have had to be selective in our choices of examples. We have chosen four areas in which compounds are either approved drugs or in clinical trials. These are chaperone inhibitors, kinase inhibitors, histone deacetylase inhibitors and inhibitors of protein–protein interactions (PPIs). Even within these areas, we have had to be selective, particularly for kinase inhibitors, and we have tried to exemplify newer approaches and novel aspects of medicinal chemistry.

    2 Chaperone Inhibitors


    Although the targeting of oncogenic proteins such as kinases has led to significant clinical benefit over the last 15 years, expectations have outweighed the reality in terms of outcomes. There are many reasons for this including tumour heterogeneity, intrinsic and acquired drug resistance and the presence of multiple oncogenic drivers in any single cancer. Targeting the cellular machinery responsible for protein quality control provides a more wide-ranging, yet still targeted, approach to inhibiting oncogenic proteins. Proteins consist of an elaborate arrangement of folds and secondary structure and, although many aspects of the folding are inherent in the properties of the protein itself, the process is complex and errors occur [3]. Indeed, the final, stable structure is often characterised by a free energy gain of some 3–7 kcal/mol over a range of partially misfolded states [4]. In a crowded cellular environment, correct protein folding is made even more difficult because of collisions between protein molecules [5]. Cells have developed a number of mechanisms to cope with ensuring that correct protein conformations are maintained. In the nuclear and cytosolic compartments, the heat-shock response, involving a range of heat-shock proteins (HSPs), is a conserved mechanism for dealing with misfolded proteins. Originally thought to be an emergency response to sudden stress, it is now recognised to be a constant process enabling protein homeostasis. In the context of cancer cells, the heat-shock response is a vital method of maintaining protein function in the stressed oncogenic state, and targeting this response may provide a combinatorial blockade of multiple oncogenic proteins.

    Heat-shock protein 90 (HSP90) is a member of the high molecular weight HSPs, along with HSP70. It accounts for some 1–2% of all cellular protein [6], and there are four closely homologous, important isoforms: HSP90α and HSP90β which are cytosolic, GRP94 which is found in the endoplasmic reticulum and TRAP1 found in mitochondria. HSP90 has a long list of client proteins that include a number of key oncogenes such as ERBB2, RAF and the androgen receptor [7]. Active HSP90 is a homodimer with each monomer consisting of an N-terminal ATP-binding domain, a middle domain and a C-terminal dimerisation domain. Seminal crystallographic studies by the Pearl group identified the ATP-binding pocket of HSP90 [8] and provided strong evidence for a catalytic cycle driven by ATP hydrolysis [9]. A variety of co-chaperones have been identified as playing roles in the catalytic cycle but HSP90 remains the key effector (Figure 1).

    Figure 1 (A) ADP bound to the nucleotide domain of HSP90 (PDB: 1BYQ). (B) A schematic view of the HSP90 catalytic cycle showing the N-terminal domain (NTD), C-terminal dimerisation domain (CTD) and the various co-chaperones that are involved at each stage.

    The first HSP90 inhibitors to be recognised were the natural products, geldanamycin (1) and radicicol (2). Geldanamycin is a benzoquinone ansamycin isolated from a Streptomyces species and was originally thought to be a tyrosine kinase inhibitor. In 1994, it was shown to bind to HSP90 [10], and this was followed in 1999 by a co-crystal structure of geldanamycin bound to the N-terminal domain of HSP90 [11]. Structurally, the ATP-binding pocket of HSP90 belongs to the unusual Bergerat fold class of ATP-binding sites that is shared by relatively few proteins [12]. The co-crystal structure of the HSP90 N-terminal domain and geldanamycin is both interesting and informative. The ligand adopts a folded conformation in its bound state in which the benzoquinone ring folds back over the macrocycle with the benzoquinone at the top (open) part of the pocket. There are a number of water-mediated hydrogen bond interactions between the ligand and the protein, a feature of all ligands that bind HSP90 in this pocket including the natural ligands ATP and ADP (Figure 2).

    Figure 2 (A) X-ray crystal structure of geldanamycin bound to the N-terminal domain of HSP90 (PDB: 1YET). (B) Structures of natural product and semi-synthetic inhibitors of HSP90.

    Geldanamycin shows not only potent in vitro and in vivo antitumour activity but also severe hepatotoxicity in preclinical animal models. It also has poor physicochemical properties including solubility, and owing to its benzoquinone moiety, it is a substrate for NQ01: a quinone reductase that converts the parent quinone to the more active hydroquinone. Semi-synthetic derivatives of geldanamycin have addressed the solubility issues. The two successful ones are 17-allyaminogeldanamycin (17-AAG, 3) and 17-dimethylaminoethylgeldanamycin (17-DMAG, 4) in which the 17-methoxy group of the quinone has been replaced by the appropriate amino group in a simple addition–elimination reaction. Following promising anticancer activity in preclinical models [13], 17-AAG (tanespimycin) entered clinical trials in 1999 (administered intravenously), and evidence of clinical activity was seen in a variety of cancers as a single agent and in combination [14] but its development was stopped after Phase II trials owing to formulation and patent life issues. The greater solubility of 17-DMAG (alvespimycin) allowed easier formulation, and a complete response was reported following i.v. administration as a single agent in castration-refractory prostate cancer in a Phase I/II trial [15]. Again, clinical investigations have been halted owing to toxicity issues [16]. The only significant alternative approach to address the issues with geldanamycin and its derivatives was by Infinity Pharmaceuticals who prepared the hydroquinone hydrochloride salt of 17-AAG, designated IPI-504 or retaspimycin hydrochloride. Following initial positive results in a Phase II trial, it has now been withdrawn owing to toxicity [17].

    The second natural product, radicicol, is an extremely potent inhibitor of HSP90...

    Erscheint lt. Verlag 2.2.2015
    Mitarbeit Herausgeber (Serie): G. Lawton, David R. Witty
    Sprache englisch
    Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
    Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
    Naturwissenschaften Chemie Organische Chemie
    ISBN-10 0-444-63485-1 / 0444634851
    ISBN-13 978-0-444-63485-6 / 9780444634856
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Adobe DRM)
    Größe: 12,5 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    EPUBEPUB (Adobe DRM)
    Größe: 18,1 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: EPUB (Electronic Publication)
    EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich