Supercritical-Pressure Light Water Cooled Reactors -

Supercritical-Pressure Light Water Cooled Reactors (eBook)

Hideo Mori, Yoshiaki Oka (Herausgeber)

eBook Download: PDF
2014 | 2014
XIII, 380 Seiten
Springer Japan (Verlag)
978-4-431-55025-9 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry.

The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water chemistry of supercritical water used as a coolant in nuclear power reactors. It will also help readers to broaden their understanding of fundamental elements of light water cooled reactor technologies and the evolution of reactor concepts.


This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry.The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water chemistry of supercritical water used as a coolant in nuclear power reactors. It will also help readers to broaden their understanding of fundamental elements of light water cooled reactor technologies and the evolution of reactor concepts.

Preface 6
Acknowledgements 8
Contents 10
About the Authors 14
Chapter 1: Introduction and Overview 15
1.1 Concept and Features 15
1.1.1 What Is Supercritical Water? 15
1.1.2 Super LWR and Super FR 16
1.1.3 Principle of the Reactor Concept Development 19
1.2 Super LWR Core Design 19
1.3 Super FR Core Design 22
1.4 Safety Characteristics 24
1.5 Research and Development 28
1.6 High Breeding with Light Water Cooling 29
1.7 Transmutation of Minor Actinides and Long-Life Fission Products 30
1.8 Super LWR and Super FR Power Plants 31
References 33
Chapter 2: Reactor Design and Safety 35
2.1 Super Light Water Reactors 35
2.1.1 Core Design of Super LWRs 37
2.1.1.1 Double-Tube Water Rod Core Design 38
2.1.1.2 Single-Pass Core Design of a Low Temperature Super LWR 44
2.1.1.3 Single-Pass Core Design of a High Temperature Super LWR 48
2.1.2 Safety Analysis of the Super LWR 52
2.1.2.1 Safety Systems 54
2.1.2.2 Analysis Method 57
2.1.2.3 Safety of Double-Tube Water Rod Core 57
Total Loss of Feed Water Flow 59
ATWS at Loss of Offsite Power 61
LOCA Analysis 61
2.1.2.4 Safety of Single-Pass Core 62
Accidents 66
Total Loss of Feedwater Flow 66
Reactor Coolant Pump Seizure 67
Control Rod Ejection (Operation Condition) 67
Abnormal Transients 68
Loss of Feedwater Heating 68
Loss of Off-Site Power 69
Loss of Turbine Load (Without Bypass Valves Open) 69
LOCA Analysis 71
Small Break LOCA 71
Large Break LOCA 73
ATWS 73
2.1.2.5 Summary 76
2.2 Super Fast Reactor 79
2.2.1 Core Design 79
2.2.1.1 Core Design Method 81
2.2.1.2 Two-Pass Core with All Upward Flow 83
2.2.1.3 Improved Two-Pass Core Design 87
2.2.1.4 Single-Pass Core Design 100
2.2.2 Plant Startup System 107
2.2.2.1 Startup System of a Super FR 109
2.2.2.2 Steam Drum Design 113
2.2.2.3 Thermal Analysis Method 115
2.2.2.4 Heat Flux Margin During Subcritical Pressure 116
2.2.2.5 Thermal Analysis During Power-Raising 118
2.2.3 Safety Analysis of the Super FR 119
2.2.3.1 Plant and Safety Systems 120
2.2.3.2 Safety Analysis Method 121
2.2.3.3 Safety Analysis of Two-Pass Core with All Upward Flow 122
Accidents Analysis 123
Total Loss of Feedwater Flow 123
Reactor Coolant Pump Seizure 125
Control Rod Ejection (Hot Standby) 126
Control Rod Ejection (Operation) 127
Abnormal Transient Analysis 128
Loss of Feedwater Heating 128
Inadvertent Startup of AFS 129
Partial Loss of Feedwater Flow 129
Loss of Off-Site Power 130
Loss of Turbine Load (With Turbine Bypass Valve Open) 131
Loss of Turbine Load (Without Turbine Bypass Valve Open) 131
Uncontrolled Withdrawal of a Control Rod (Hot Standby) 132
Uncontrolled Withdrawal of a Control Rod (Operation) 132
Feedwater Flow Rate Control System Failure 133
Pressure Control System Failure 133
MSIV Closure 135
LOCA Analysis 135
Cold-Leg Break LOCA 135
Hot-Leg Break LOCA 143
Summary for Accidents and Abnormal Transients 152
2.2.3.4 Safety Analysis of a Super FR with Single-Pass Core 152
Accident Analysis 153
Total Loss of Feedwater Flow 153
Reactor Coolant Pump Seizure 156
Control Rod Ejection 156
Transient Analysis 158
Loss of Feedwater Heating 158
Inadvertent Start-Up of AFS 159
Partial Loss of Feedwater Flow 160
Loss of Off-Site Power 160
Loss of Turbine Load (Without Bypass Valves Open) 162
Uncontrolled Withdrawal of a Control Rod (Operation) 162
Feedwater Flow Rate Control System Failure 163
Pressure Control System Failure 163
LOCA Analysis 165
Small Cold-Leg Break LOCA 165
Large Cold-Leg Break LOCA 167
ATWS 170
Loss of Feedwater Heating 170
Inadvertent Startup of AFS 171
Partial Loss of Feedwater Flow 171
Loss of Off-Site Power 174
Loss of Turbine Load (Without Bypass Valves Open) 176
Uncontrolled Withdrawal of a Control Rod (Hot Standby) 176
Uncontrolled Withdrawal of a Control Rod (Operation) 178
Pressure Control System Failure 178
MSIV Closure 179
Summary 179
2.3 Transient Subchannel Analysis 183
2.3.1 Transient Subchannel Analysis Model 186
2.3.1.1 Governing Equations 186
Axial Momentum Conservation Equation 186
Transverse Momentum Conservation Equation 188
Mass Continuity Equation 188
Energy Conservation Equation 188
2.3.1.2 Fuel Rod Module 189
2.3.1.3 Algorithm of the Subchannel Analysis Code 190
2.3.2 Subchannel Safety Analysis of Accidents and Abnormal Transients 190
2.3.2.1 Accident Analysis 192
Total Loss of Feedwater Flow 192
Reactor Coolant Pump Seizure 192
CR Ejection (Hot Standby) 192
CR Ejection (Operation) 194
2.3.2.2 Abnormal Transient Analysis 194
Loss of Feedwater Heating 194
Inadvertent Startup of AFS 196
Partial Loss of Feedwater Flow 196
Loss of Off-Site Power 196
Loss of Load (Without Turbine Bypass Valves Open) 197
Uncontrolled CR Withdrawal (Hot Standby) 197
Uncontrolled CR Withdrawal (Operation) 197
Feedwater Flow Rate Control System Failure 199
MSIV Closure 199
2.3.2.3 Summary of Accidents and Abnormal Transients Analyzes 201
2.3.3 Sensitivity Analysis 201
2.3.3.1 Sensitivity of Local Power Peaking Factor 201
2.3.3.2 Sensitivity of Inlet Mass Flow and Power Ratio 203
2.3.4 Summary 203
2.4 Fuel Rod Spacer Design 204
2.4.1 Background 204
2.4.2 Numerical Approach 205
2.4.3 Modification of Standard Grid Spacer 205
2.4.4 Innovative Grid Spacer Concept 208
2.4.5 Estimation of the MCST Reduction 210
2.5 Transmutation of Long-Life Radioactive Elements 211
2.5.1 Transmutation of LLFPs 213
2.5.2 Transmutation of 99Tc and 129I 215
2.5.3 Transmutation of 135Cs 220
2.6 Breeder Reactor 223
2.6.1 Tightly Packed Fuel Rod Assembly 224
2.6.2 Breeding Core Design 225
2.7 Nuclear Calculation of the Fast and Thermal Neutron Coupled Core 234
2.7.1 Accuracy of Nuclear Design of Fast and Thermal Neutron Coupled Core by SRAC 234
2.7.1.1 Fuel Assembly and Core Layout 235
2.7.1.2 Calculation Model 236
2.7.1.3 Analysis of Blanket Fuel Assembly with Zirconium Hydride Layer 237
2.7.1.4 Analysis of Fast and Thermal Neutron Couple Core 240
2.7.2 Reconstruction of Cell Homogenized Macroscopic Cross Sections for Analyzing Fast and Thermal Coupled Cores Using the SRA... 243
2.7.2.1 Conventional Methods 244
2.7.2.2 Reconstruction Method of the Cell Homogenized Cross Section 244
2.7.2.3 Verification of the Reconstruction Method 247
References 258
Chapter 3: Thermal Hydraulics 263
3.1 Experiments with Surrogate Fluids 263
3.1.1 Single Tube Experiments 264
3.1.1.1 Heat Transfer Experiments 267
General Heat Transfer Characteristics 267
Correlation for Normal Heat Transfer 268
Heat Transfer Under Flow-Reducing Transient Condition 271
3.1.1.2 Pressure Drop Experiments 272
General Frictional Pressure Drop Characteristics 272
Correlation for Friction Factor 273
3.1.2 Single Rod Experiments 274
3.1.2.1 Heat Transfer Experiments 275
3.1.2.2 Pressure Drop Experiments 276
3.1.3 Three-Rod and Seven-Rod Sub-Bundle Experiments 277
3.1.3.1 Heat Transfer Experiments 281
Heat Transfer Characteristics 281
Correlation for Heat Transfer 287
Heat Transfer Under Flow-Reducing Transient Condition 288
3.1.3.2 Pressure Drop Experiments 291
3.1.3.3 Effect of Grid Spacer on Heat Transfer 291
3.1.4 Critical Heat Flux Experiments at Near-Critical Pressure 294
3.1.4.1 Critical Heat Flux Characteristics 295
3.1.4.2 Correlation for CHF at Near-Critical Pressure 298
3.1.5 Condensation Experiments 299
3.1.5.1 Observation of Oscillatory Condensation 300
3.1.5.2 Pressure Amplitude During Oscillatory Condensation 301
3.1.5.3 Dominant Frequency of Pressure Fluctuation 303
3.1.6 Critical Flow Measurements 305
3.1.7 Cross Flow Measurements 306
3.1.7.1 Turbulent Mixing 307
3.1.7.2 Cross Flow for the Heating Condition 309
3.2 Experiments of Water 310
3.2.1 Introduction 310
3.2.2 Experimental Apparatus 311
3.2.3 Heat Transfer Experimental Results of Supercritical Water Flowing Upward in a Single Small-Diameter Tube 312
3.2.3.1 Experimental Conditions 312
3.2.3.2 Experimental Results 313
3.3 CFD Analysis 315
3.3.1 Introduction 315
3.3.2 Three-Dimensional Two-Fluid Model Analysis Code ACE-3D/BFC 317
3.3.3 Improvement Issues of ACE-3D/BFC 319
3.3.3.1 Two-Fluid Model 319
3.3.3.2 Turbulence Model 319
3.3.3.3 Thermo-Physical Properties 319
3.3.4 Expansion of the Two-Fluid Model 320
3.3.5 Improvement of the Turbulent Model 322
3.3.6 Heat Transfer Analysis in Seven-Rod Simulated Fuel Assembly 324
3.3.7 Conclusion 331
References 331
Chapter 4: Materials 334
4.1 Development of Fuel Cladding Materials 335
4.1.1 Preparation of Experimental Austenitic Alloys 335
4.1.2 Mechanical Properties of the Experimental Austenitic Alloys 336
4.1.3 Preliminary Examination of Corrosion Properties in High Temperature Water and Supercritical Water 341
4.1.4 Summary 342
4.2 Oxidation Properties and Kinetics of Fuel Cladding Candidate Materials 344
4.2.1 Oxidation Experiments in Supercritical Water Environment 344
4.2.2 Oxidation Kinetics in Supercritical Water 345
4.2.3 Characteristics of Oxide Layers and Its Relation to Oxidation Behaviors 351
4.2.4 Summary 355
4.3 Thermal Insulating Material 355
References 358
Chapter 5: Material-Coolant Interactions 359
5.1 Supercritical Water Chemistry 360
5.1.1 Introduction 360
5.1.2 Experimental Apparatus: Supercritical Water Loop System for Elution/Corrosion Study 360
5.1.3 Elution and Corrosion Properties: Temperature and Water Chemistry Dependence 362
5.1.3.1 Elution Experiment (1): Elution Efficiency in Deaerated Water (Ar Saturated Water) 362
5.1.3.2 Elution Experiment (2): Elution Efficiency in Oxygen Dissolved Water 364
5.1.3.3 Corrosion Rate and Composition of Oxide Layer in Deaerated Water (Ar Saturated Water) and Oxygen Dissolved Water 365
5.1.3.4 Factors Influencing Elution Behavior of SUS 304 in Subcritical and Supercritical Water 367
5.1.4 Elution and Corrosion Properties: Under Transient Conditions 370
5.1.4.1 Elution Behavior of SUS 304 Under Temperature Shift Conditions 370
5.1.4.2 Pre-treatment Dependence on Elution Behavior of SUS 304 372
5.1.4.3 Corrosion Property Under Transient Conditions 373
5.1.5 Summary of Supercritical Water Chemistry 374
5.2 Corrosion Product Transport 375
5.2.1 Introduction 375
5.2.2 Experimental System, Analysis, and Specimens 376
5.2.2.1 System for the Mass Transfer Experiment 376
5.2.2.2 Specimens 377
5.2.2.3 Analysis 377
5.2.2.4 Oxide Film 377
5.2.3 Results and Discussion 378
5.2.3.1 Tube Specimen Experiment 378
SUS 316 378
Inconel 625 380
5.2.3.2 Sheet Specimen Experiment 381
SUS 316 381
Inconel 625 385
5.2.4 Summary 386
References 387
Index 388

Erscheint lt. Verlag 21.10.2014
Zusatzinfo XIII, 380 p. 383 illus., 231 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Chemistry in Supercritical Water • Corrosion Product Transport • Material for SCWR • Supercritical Fluid Heat Transfer • Supercritical Water Cooled Reactors
ISBN-10 4-431-55025-9 / 4431550259
ISBN-13 978-4-431-55025-9 / 9784431550259
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An Introduction

von Philip Hofmann

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99