Lithium-ion Battery Materials and Engineering -

Lithium-ion Battery Materials and Engineering (eBook)

Current Topics and Problems from the Manufacturing Perspective
eBook Download: PDF
2014 | 1. Auflage
IX, 212 Seiten
Springer London (Verlag)
978-1-4471-6548-4 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Gaining public attention due, in part,  to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production.

This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries.

Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries.

Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.



Malgorzata K. Gulbinska holds a Ph.D. degree in chemistry, with experience in inorganic syntheses methods (including solid state methods) and in materials science and a strong background in materials analyses methods (such as XRD, SEM, BET, etc.) and the assembly and testing of coin and pouch lithium-ion cells (both half and full cells).

Since February 2005 she has been working at Yardney Technical Products, Inc., located in Pawcatuck, CT, USA. Yardney is a manufacturer of the high-end lithium-ion batteries for space, military and medical (implanted hearing aid) applications who also sponsored a significant part of her graduate (Ph.D.) thesis work that was described silicon-based anode materials for LIB applications.

Within the past years, Malgorzata Gulbinska was a PI and Co-PI on several completed and current grants; totaling over $3,000,000.00. The sources were/are both Federal (Department of Energy, National Science Foundation, Naval Air Warfare Center) as well as Industrial (BASF Catalysts LLC, NJ, USA; HPL SA, Lausanne, Switzerland).

Recently (2007-2009) she has been awarded five Phase I research grants; three from the U.S. Department of Energy, one from National Science Foundation, and one from NASA.


Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production.This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries.Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell's performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.

Malgorzata K. Gulbinska holds a Ph.D. degree in chemistry, with experience in inorganic syntheses methods (including solid state methods) and in materials science and a strong background in materials analyses methods (such as XRD, SEM, BET, etc.) and the assembly and testing of coin and pouch lithium-ion cells (both half and full cells).Since February 2005 she has been working at Yardney Technical Products, Inc., located in Pawcatuck, CT, USA. Yardney is a manufacturer of the high-end lithium-ion batteries for space, military and medical (implanted hearing aid) applications who also sponsored a significant part of her graduate (Ph.D.) thesis work that was described silicon-based anode materials for LIB applications.Within the past years, Malgorzata Gulbinska was a PI and Co-PI on several completed and current grants; totaling over $3,000,000.00. The sources were/are both Federal (Department of Energy, National Science Foundation, Naval Air Warfare Center) as well as Industrial (BASF Catalysts LLC, NJ, USA; HPL SA, Lausanne, Switzerland).Recently (2007-2009) she has been awarded five Phase I research grants; three from the U.S. Department of Energy, one from National Science Foundation, and one from NASA.

Preface I: Introduction 6
Preface II: Historical Notes 8
Contents 10
1 Lithium-ion Cell Materials in Practice 11
Abstract 11
1.1 Lithium-ion Cell Components and Materials 11
1.2 Cathode Active Materials 13
1.2.1 Lithium Cobalt Oxide 15
1.2.2 Lithium Nickel Oxide Derivatives: LiNi0.8Co0.2O2 and LiNi0.8Co0.15Al0.05O2 20
1.2.3 The Family of LiNi1-x-yCoxMnyO2 Materials 20
1.2.4 Lithium Manganese Spinel and Derivatives 23
1.2.5 Lithium Iron Phosphate 25
1.3 Anode Active Materials 27
1.4 Electrodes: Conductive Diluents and Binders 30
1.5 Electrolyte Solutions 32
1.6 Porous Separators 34
1.7 Future Trends in Lithium-ion Cell Materials 34
References 37
2 Predicting Materials’ Performance 40
Abstract 40
2.1 Editor’s Note 40
2.2 Introduction: Macro and Intrinsic Kinetics 41
2.3 Thermodynamics of Solid Electrodes 44
2.3.1 Ideal and Real Solutions 45
2.3.2 Equilibrium Potentials on EASP 48
2.3.3 The Dependence of Equilibrium Potential on DoC of EASP 48
2.3.4 Entropy of the Electrode Reaction 51
2.4 Mass Transport in Solid Electrodes 54
2.4.1 Galvanostatic Pulse Method 57
2.4.2 Potential Transient Method 59
2.5 Rate of Electrochemical Stage 61
2.6 Concentration Dependence of Exchange Current on EASP 61
2.7 The Methods of Investigation of Electrochemical Reaction Step 63
2.8 Selected Examples of OCP and Related Dependencies on Lithium Content 66
2.9 Conclusion 69
References 69
3 Optimizing Electrodes for Lithium-ion Cells 72
Abstract 72
3.1 Introduction 72
3.2 Electrode Formulations and the Concepts of Weight Loading and Porosity 74
3.3 Weight Loading and Porosity of Electrodes:Impact on DC Resistance of the Li-ion Cell 77
3.4 Component Optimization, Example 1: Cathode and Binder Improvements 80
3.5 Component Optimization, Example 2: Conductive Diluents in the Anode 84
3.6 Systemic Optimization Example: Thermal Stability and Low-Temperature Performance 87
3.7 Separators Assessment and Optimization 89
3.8 Electrolyte: Conductivity Optimization 90
3.9 Nanoparticulate Electrode Materials and Their Implementation and Optimization Challenges 93
3.10 Conclusions 95
3.11 Further Reading 95
References 96
4 Lithium-ion Cells for High-End Applications 98
Abstract 98
4.1 Lithium-ion Cells for High-End Applications: Introduction 98
4.1.1 Land 102
4.1.2 Human Implantable Lithium Batteries 107
4.1.3 Aerial 109
4.1.4 Space 111
4.1.5 Sea 115
4.2 Quality and Reliability for High-End Lithium-ion Technology 117
4.2.1 Quality 117
4.2.2 Reliability 118
4.3 Conclusion 120
References 120
5 Lithium-ion Cell and Battery Safety 123
Abstract 123
5.1 Battery Safety: An Introduction and Critical Definitions 123
5.1.1 Analyses Methods: From Materials, Through Components, to Cells 128
5.1.1.1 Cathodes 129
5.1.1.2 Anodes 132
5.1.1.3 Electrolytes 133
5.1.1.4 Separators 139
5.2 Cell-Level Protection Devices 141
5.3 Safety at the Battery Level 144
5.3.1 Thermal Management 145
5.3.2 Battery Management System (BMS) 149
5.4 Safety Testing 152
5.4.1 Safety Testing Examples 152
5.4.1.1 Test Example 1: Gross Overcharge and Event Propagation 153
5.4.1.2 Test Example 2: Nail Penetration 154
5.5 Conclusions 155
5.6 Further Reading 155
References 156
6 Lithium-ion Cells in Hybrid Systems 159
Abstract 159
6.1 Hybrid Systems: General Introduction 159
6.2 Lithium-ionUltracapacitor Hybrid System 160
6.2.1 Li-ionUltracapacitor Hybrid Construction 162
6.2.2 Li-ionUltracapacitor Hybrid Testing 163
6.2.3 Li-ionUltracapacitor Hybrid Results 164
6.2.4 Li-ionUltracapacitor Hybrid Conclusions and Applications 164
6.3 Li-ionLithium-Air Hybrid System 166
6.3.1 Li-ionLithium-Air Hybrid Battery Construction 167
6.3.2 Li-ionLithium-Air Hybrid Testing 168
6.3.3 Li-ionLithium-Air Hybrid Testing Results 168
6.3.4 Li-ionLithium-Air Hybrid Conclusions and Applications 169
6.4 Design Considerations for a Fuel CellLi-ion Rechargeable Battery Hybrid Power System 169
6.4.1 A Case Study: The Fuel Cell Component Selection for the Hybrid System 170
6.4.1.1 Fuel Storage 171
6.4.1.2 Operational Limitations of the Candidate Fuel Cells 172
6.4.1.3 Estimated Specific Energy, Energy Density, and Power Density in the Particular Hybrid System 173
6.4.1.4 Comparative Technology Readiness 174
6.4.1.5 Other: Efficiency, Thermal Losses, and Fuel Purity Requirements 174
6.4.2 Power Management and Design Optimization of Fuel CellBattery Hybrid System 175
6.4.3 Designing the Best Lithium-ion Battery for a BatteryFuel Cell Hybrid System 176
6.4.4 Fuel CellLi-ion Hybrid System: Conclusions 178
6.5 Hybrid Systems: Closing Remarks 179
6.6 Further Reading 179
References 180
7 Competing Technologies Landscape 182
Abstract 182
7.1 Introduction 182
7.2 Man-Portable Applications Background 183
7.2.1 Other Battery Technologies for Portable Applications 184
7.2.2 Fuel Cells for Portable Applications 184
7.2.3 Photovoltaics for Portable (and Other) Applications 192
7.2.4 Thermal Electric Technology for Portable (and Other) Applications 193
7.2.5 Piezoelectric Technology for Portable Applications 194
7.2.6 Supercapacitors for Portable Applications 195
7.2.7 Internal Combustion Engines for Portable Applications 195
7.3 Transport Applications 196
7.4 Stationary Applications 199
7.5 Summary 201
7.6 Conclusions 202
7.7 Further Reading 203
References 212

Erscheint lt. Verlag 6.9.2014
Reihe/Serie Green Energy and Technology
Zusatzinfo IX, 205 p. 79 illus.
Verlagsort London
Sprache englisch
Themenwelt Naturwissenschaften Biologie Mikrobiologie / Immunologie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Schlagworte Battery Cell Components & Capabilities • Energy Storage Devices • Lithium-ion Manufacturer • Lithium-ion Technology • Potential Application of Lithium-Ion Batteries
ISBN-10 1-4471-6548-9 / 1447165489
ISBN-13 978-1-4471-6548-4 / 9781447165484
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Fabian C. Roth; Markus Numberger; Andreas Draguhn

eBook Download (2023)
Springer Gabler (Verlag)
42,99