Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults -

Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults (eBook)

Ronald Ross Watson (Herausgeber)

eBook Download: PDF | EPUB
2015 | 1. Auflage
398 Seiten
Elsevier Science (Verlag)
978-0-12-418686-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
108,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults focuses on the ways in which food and dietary supplements affect the major health problems of aging adults. Researchers in nutrition, diet, epidemiology, and aging studies, as well as healthcare providers who work with elderly patients will use this comprehensive resource as a tool in their long-term goal of preventing and treating chronic disease within the elderly.

This book brings together a broad range of experts working on the different aspects of foods and dietary supplements (vitamins, herbs, plant extracts, etc.) in health promotion and disease prevention. They have contributed chapters which define a range of ways in which foods, nutriceuticals, and dietary supplements prevent disease and promote health in older adults. They begin by reviewing the medicinal role of foods, herbal, and dietary supplements in health promotion in older adults, as well as some of the most commonly used supplements in elder 'self-medication.' They review the most recent studies of how foods, herbal, and dietary supplements are effective in the prevention and treatment of cancer, cardiovascular disease, diabetes, and other obesity associated diseases in older adults. Then they consider alcohol, other drugs, and plant based drugs of abuse which can adversely affect the health of older adults. Lastly, they consider foods and dietary supplements in gene regulation in older adults.


  • Investigates the important nutritional requirements of the aging population in health and in relation to various acute and chronic diseases
  • Explores the nutritional effects of botanical extracts and components that can have important health promotion benefits, and risks, to ensure safe consumption
  • Reviews studies of common diseases within the aging population including cancer, cardiovascular, metabolic, and infectious diseases that can alter the intake of foods, supplements, and/or requirements for various nutrients
  • Investigates the mechanisms of action of components of foods and dietary supplements, in particular gene activation and epigenetics

Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults focuses on the ways in which food and dietary supplements affect the major health problems of aging adults. Researchers in nutrition, diet, epidemiology, and aging studies, as well as healthcare providers who work with elderly patients will use this comprehensive resource as a tool in their long-term goal of preventing and treating chronic disease within the elderly. This book brings together a broad range of experts working on the different aspects of foods and dietary supplements (vitamins, herbs, plant extracts, etc.) in health promotion and disease prevention. They have contributed chapters which define a range of ways in which foods, nutriceuticals, and dietary supplements prevent disease and promote health in older adults. They begin by reviewing the medicinal role of foods, herbal, and dietary supplements in health promotion in older adults, as well as some of the most commonly used supplements in elder "e;self-medication."e; They review the most recent studies of how foods, herbal, and dietary supplements are effective in the prevention and treatment of cancer, cardiovascular disease, diabetes, and other obesity associated diseases in older adults. Then they consider alcohol, other drugs, and plant based drugs of abuse which can adversely affect the health of older adults. Lastly, they consider foods and dietary supplements in gene regulation in older adults. Investigates the important nutritional requirements of the aging population in health and in relation to various acute and chronic diseases Explores the nutritional effects of botanical extracts and components that can have important health promotion benefits, and risks, to ensure safe consumption Reviews studies of common diseases within the aging population including cancer, cardiovascular, metabolic, and infectious diseases that can alter the intake of foods, supplements, and/or requirements for various nutrients Investigates the mechanisms of action of components of foods and dietary supplements, in particular gene activation and epigenetics

Front Cover 1
Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults 4
Copyright Page 5
Contents 6
List of Contributors 12
Preface 16
Acknowledgments 18
I. Non-Nutritional Components in Diet and Supplements, Nutraceuticals and their Role in Health Promotion in the Mature Adult 20
1 A Traditional Elder’s Anti-Aging Cornucopia of North American Plants 22
1.1 Introduction 22
1.2 Indian Breadroot (Pediomelum esculentum (Pursh) Rydb. formerly Psoralea esculenta Pursh) 23
1.3 Gumweed (Grindelia squarrosa (Pursh) Dunal) 24
1.4 Labrador Tea (Ledum spp.) 26
1.5 Blueberry (Vaccinium spp.) 27
1.6 Conclusion 28
References 28
2 Alzheimer’s Disease: Current Perspectives – Animal Models, Drugs Under Development, and Potential Nutritional Inte ... 32
2.1 Introduction 32
2.1.1 Dementia 32
2.1.2 Symptoms of Alzheimer’s Disease 32
2.1.3 Diagnosis of Alzheimer’s Disease 33
2.1.3.1 Differences between the Original and New Criteria in Diagnosing Alzheimer’s Disease 33
2.1.3.2 The Three Stages of Alzheimer’s Disease Proposed by the New Criteria and Guidelines 33
2.2 Incidence and Prevalence: Global and us Statistics 33
2.2.1 Global Incidence of Dementia 33
2.2.2 Global Prevalence of Dementia and Alzheimer’s Disease 34
2.2.3 Prevalence of Alzheimer’s Disease and Other Dementias in the USA 34
2.2.3.1 New Study Ranks Alzheimer’s as Third Leading Cause of Death in the USA 34
2.3 Economic Impact and Healthcare Costs 34
2.3.1 The Need for Intense R& D in Alzheimer’s Disease
2.4 Molecular Basis 35
2.4.1 Cholinergic Hypothesis 35
2.4.2 Amyloid Cascade 36
2.4.3 Tau Hypothesis 36
2.5 Medication 36
2.6 Experimental Animal Models and Therapeutic Approaches 37
2.6.1 Animal Models with Aß Pathology 38
2.6.2 Animal Models with Tau Pathology 38
2.6.3 Animal Models with Aß and Tau Pathologies Combined 39
2.6.4 Non-transgenic Animal Models 39
2.6.5 Therapeutic Approaches 39
2.7 Recent Drug Development Efforts 40
2.8 Scope of Nutritional Intervention 42
2.9 Insights and the Future 42
References 44
3 Amla in the Prevention of Aging: Scientific Validation of the Ethnomedicinal Claims 48
3.1 Introduction 48
3.2 Traditional and Validated Uses 48
3.2.1 Amla in Diabetes 49
3.2.2 Amla in Cardiovascular Disease 51
3.2.3 Amla in Renal Failure 51
3.2.4 Amla in Cancer 51
3.2.5 Amla as an Immunomodulator 52
3.2.6 Amla in Arthritis 52
3.2.7 Amla in Cataracts 52
3.2.8 Amla in Dermatological Diseases 52
3.2.9 Amla and Memory 53
3.3 Conclusion 53
References 53
4 Sarcopenia – Potential Beneficial Effects of Creatine Supplementation 56
4.1 Introduction 56
4.2 Creatine and Aging 57
4.3 Timing of Creatine Supplementation 57
4.4 Safety of Creatine for Older Adults 57
4.5 Summary 58
References 58
5 Dietary Spices in the Prevention of Rheumatoid Arthritis: Past, Present, and Future 60
5.1 Introduction 60
5.2 Use of Complementary and Alternative Medicines in the Treatment of Arthritis 61
5.2.1 Fenugreek 61
5.2.2 Coriander 61
5.2.3 Clove 62
5.2.4 Black Cumin 63
5.2.5 Ginger 63
5.2.6 Turmeric 64
5.3 Conclusions 65
References 65
6 Medicinal Benefits of Ginger in Various Gastrointestinal Ailments: Use in Geriatric Conditions 70
6.1 Introduction 70
6.2 Ginger in Traditional Medicine 71
6.3 Chemistry of Ginger 71
6.4 Ginger in Gastrointestinal Ailments 71
6.4.1 Ginger in Oral Health 71
6.4.2 Ginger Prevents Epigastric Discomfort and Dyspepsia 71
6.4.3 Ginger is Effective Against Various Gastric Ulcerogens 72
6.4.4 Ginger is an Effective Anti-emetic Agent 73
6.4.5 Ginger Alters Gastrointestinal Motility 73
6.4.5.1 Ginger Affects Digestive Enzymes 74
6.4.6 Ginger Increases Brush-Border Surface Area and Alters its Membrane Fluidity 74
6.4.7 Effect of Ginger on Intestinal Pathogens 74
6.4.8 Ginger is Effective in Inflammatory Bowel Disease 74
6.4.9 Ginger Prevents Diarrhea 75
6.4.10 Hepatoprotective Effects of Ginger 75
6.4.11 Ginger Rectifies Hepatic Lipid Metabolism 75
6.4.12 Ginger in the Prevention and Treatment of Gastrointestinal Cancer 76
6.5 Conclusions 76
References 77
7 Foods and Dietary Supplements in the Prevention and Treatment of Neurodegenerative Diseases in Older Adults 82
7.1 Introduction 82
7.2 Dementia and Alzheimer’s Disease 82
7.2.1 Antioxidants and Alzheimer’s Disease 83
7.2.2 Vitamin D and Alzheimer’s Disease 83
7.2.3 Omega-3 Fats and Alzheimer’s Disease 83
7.2.4 The Role of a Good Caregiver in Nutritional Status of Patients with Alzheimer’s Disease 83
7.3 Multiple Sclerosis 83
7.3.1 Vitamins, Polyunsaturated Fatty Acids, and Multiple Sclerosis 84
7.4 Parkinson’s Disease 84
7.4.1 B Vitamins and Parkinson’s Disease 84
7.4.2 Therapeutic Effects of Curcumin in Parkinson’s Disease 84
7.4.3 Vitamin D3 and Parkinson’s Disease 84
7.4.4 Dietary Fats and Parkinson’s Disease 84
7.5 Dysphagia in Neurodegenerative Diseases 85
7.5.1 Eating Strategies in Dysphagia 85
7.6 Conclusion 85
References 85
Further Reading 86
II. Nutraceuticals in Chronic Disease and Cancer Therapy in Seniors 88
8 Targeting Mitochondria for Healthy Brain Aging 90
8.1 Introduction 90
8.2 Mitochondria Bioenergetics 90
8.3 Changes that Occur in the Brain with Age 92
8.4 Age-Related Cellular Dysfunction and Association with Alzheimer’s Disease 93
8.5 Dietary Supplementation Targeting Mitochondrial Function to Improve Age-Related Cognitive Deficits 94
8.6 The Importance of Canine Studies in Age-Related Cognitive Deficits 96
8.7 Summary 97
Acknowledgments 97
References 97
9 The Progression of Non-alcoholic Fatty Liver Disease and Lifestyle Intervention in Older Adults 104
9.1 Introduction 104
9.2 Prevalence of NAFLD and NASH 104
9.3 Risk Factors Associated with NAFLD and NASH 105
9.3.1 Metabolic Syndrome 105
9.3.2 Age and Gender 106
9.3.3 Genetics 107
9.3.4 Lifestyle 107
9.4 Pathogenesis of NAFLD and NASH 108
9.4.1 Mechanism of Steatosis 108
9.4.2 What Promotes Steatosis to Steatohepatitis? 109
9.5 Animal Models 109
9.5.1 Genetic Models 110
9.5.2 Dietary Model 110
9.5.3 Combined Model of Genetic Modification and Dietary Challenges 110
9.6 NAFLD and NASH in the Elderly 110
9.7 Management of NAFLD/NASH 112
9.8 Conclusions 112
References 112
10 Use of Tea (Camellia sinensis [L.] Kuntze) as a Hepatoprotective Agent in Geriatric Conditions 118
10.1 Introduction 118
10.2 Phytochemistry of Tea 119
10.2.1 Validated Uses 119
10.3 Tea Protects Against Alcohol-Induced Hepatotoxicity 119
10.4 Tea Protects Against Carbon Tetrachloride-Induced Hepatotoxicity 120
10.5 Tea is Effective in Viral Hepatitis 120
10.6 Effect of Tea on Ischemia Reperfusion Injury 120
10.7 Effect of Tea Phytochemicals on Hepatotoxicity of Lead 120
10.7.1 Effect of Tea Phytochemicals on Phenobarbitol-Induced Liver Damage 120
10.7.2 Effect of Tea Phytochemicals on Hepatotoxicity of Microcystin 121
10.7.3 Effect of Tea Phytochemicals on Hepatotoxicity of Azathioprine 121
10.7.4 Effect of Tea Phytochemicals on Galactosamine and Lipopolysaccharide-induced Liver Damage 121
10.7.5 Effect of Tea on Hepatotoxicity of Insecticides 121
10.7.6 Effect of Tea on Hepatocarcinogenesis 121
10.8 Conclusions 122
References 122
11 Fruits in the Prevention of Cataractogenesis by Targeting the Aldose Reductase: Promise from Preclinical Observations 124
11.1 Introduction 124
11.1.1 Cataracts 124
11.2 Beneficial Effects of Dietary Agents 126
11.2.1 Amla 126
11.2.2 Lemon 126
11.2.3 Orange 126
11.2.4 Grapes 126
11.2.5 Mangosteen 127
11.2.6 Litchi 127
11.3 Conclusions 127
References 127
12 Ginger (Zingiber officinale Roscoe) in the Treatment of Osteoarthritis: Clinical Observations and Mechanistic Insights 130
12.1 Introduction 130
12.2 Use of Complementary and Alternative Medicines in the Treatment of Arthritis 131
12.3 Phytochemistry of Ginger 131
12.4 Traditional Uses of Ginger 131
12.5 Scientific Studies Validating the Antiarthritic Effects of Ginger 133
12.6 Mechanistic Studies 133
12.6.1 Scavenging of Reactive Oxygen Species 133
12.6.2 Effect on Antioxidant Molecules and the Antioxidant Enzymes 133
12.6.3 Inhibition of Nitric Oxide and iNOS 133
12.6.4 Anti-inflammatory Activity 134
12.6.5 Ginger Decreases the Metalloproteinase Levels 134
12.6.6 Decrease in NF-.B Activation 134
12.7 Conclusions 135
References 135
13 Natural Polyphenols Target the Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Signaling Pathway for Can ... 138
13.1 Introduction 138
13.2 Characteristic of Death Ligand Trail and Trail-Mediated Apoptotic Pathway 138
13.3 Polyphenols Enhance Trail-Induced Apoptosis in Cancer Cells 140
References 150
14 Use of the Ayurvedic Drug Triphala in Medical Conditions Afflicting Older Adults 154
14.1 Introduction 154
14.2 Rasayana Drugs in Ayurveda 155
14.2.1 Common Forms of Triphala 156
14.3 Traditional Uses of Triphala 157
14.3.1 Antimicrobial Activity 158
14.3.2 Wound Healing 158
14.3.3 Dental Care 158
14.3.4 Anti-stress Activity 158
14.3.5 Immunomodulatory Activity 159
14.3.6 Anti-arthritic Effects 159
14.3.7 Hepatoprotective Effects 159
14.3.8 Anti-hyperglycemic Effects 159
14.3.9 Anti-hyperlipidemic Effects 159
14.3.10 Triphala in the Prevention and Treatment of Cancer 159
14.4 Conclusion 160
References 160
15 Use of Ayurvedic Medicinal Plants as Immunomodulators in Geriatrics: Preclinical Studies 162
15.1 Introduction 162
15.1.1 The Immune System in the Elderly 162
15.2 Plants as Immunomodulators 163
15.2.1 Ocimum sanctum Linn. or Ocimum tenuiflorum L. (Family Lamiaceae) 163
15.2.2 Phyllanthus emblica L. or Emblica officinalis Gaertn. (Family Phyllanthaceae) 163
15.2.3 Withania somnifera (L.) Dunal (Family Solanaceae) 164
15.2.4 Tinospora cordifolia (Thunb.) Miers (Family Menispermaceae) 165
15.2.5 Semecarpus anacardium Linn. (Family Anacardiaceae) 165
15.2.6 Azadirachta indica A. Juss (Family Meliaceae) 165
15.2.7 Curcuma longa Linnaeus (Family Zingiberaceae) 165
15.2.8 Zingiber officinale Roscoe (Family Zingiberaceae) 165
15.2.9 Mangifera indica Linn. (Family Anacardiaceae) 166
15.2.10 Asparagus racemosus (Willd.) Oberm. (Family Asparagaceae) 167
15.2.11 Glycyrrhiza glabra L. (Family Fabaceae) 167
15.3 Conclusions 167
References 167
16 The Health Benefits of Indian Traditional Ayurvedic Rasayana (Anti-aging) Drugs: A Review 170
16.1 Introduction 170
16.2 Hypothesis of Aging 170
16.3 Ayurveda and Aging 171
16.4 Types of Rasayana Drugs and Some Compositions 172
16.4.1 Amalakayas Rasayana 172
16.4.2 Chyavanaprasha 172
16.4.3 Brahma Rasayana 173
16.4.4 Ashwagandha Rasayana 175
16.4.5 Narasimha Rasayana 175
16.4.6 Triphala 175
16.4.7 Amritaprasham 175
16.4.8 Anwala Churna 175
16.4.9 Amalkadi Ghrita 176
16.4.10 Brahmi Rasayana 176
16.5 Mechanisms Responsible for the Beneficial Effects 176
16.5.1 Free Radical Scavenging 176
16.5.2 Inhibition of Lipid Peroxidation 177
16.5.3 Increase in Antioxidant Enzymes 177
16.5.4 Antimutagenic Activities 177
16.5.5 Anti-inflammatory Effects 178
16.5.6 Hemopoietic Stimulation 178
16.5.7 Immune Modulation 178
16.5.8 Adaptogenic and Anti-stress Properties 178
16.6 Conclusions 178
References 179
17 Can Phytochemicals be Effective in Preventing Ethanol-Induced Hepatotoxicity in the Geriatric Population? An Evid ... 182
17.1 Introduction 182
17.2 Phytochemicals in Protection Against Alcohol-Induced Hepatotoxicity 183
17.2.1 Beta-Carotene 183
17.2.2 Lutein 183
17.2.3 Meso-Zeaxanthin 183
17.2.4 Betaine 183
17.2.5 Curcumin 185
17.2.6 Ferulic Acid 185
17.2.7 Ellagic Acid 185
17.2.8 Epigallocatechin-3-Gallate 185
17.2.9 Quercetin 186
17.2.10 Morin 186
17.2.11 Hydroxystilbenes and Resveratrol 186
17.2.12 Ursolic Acid 186
17.2.13 Andrographolide and Arabinogalactan Proteins of Andrographis paniculata Nees 186
17.2.14 Picroliv 187
17.2.15 Silymarin 187
17.3 Mechanisms 187
17.4 Conclusions 187
References 188
18 Chamomile: A Herbal Agent for Treatment of Diseases of the Elderly 190
18.1 Introduction 190
18.2 The Plant – Chamomile 190
18.3 Phytochemicals in Chamomile 191
18.4 Use of Chamomile Based on Traditional Practice 191
18.5 Use of Chamomile Based on Scientific Evidence 191
18.5.1 Allergy 191
18.5.2 Cancer 193
18.5.3 Common Cold 193
18.5.4 Cardiovascular Conditions 193
18.5.5 Colic/Diarrhea 194
18.5.6 Diabetes 194
18.5.7 Dermatitis 194
18.5.8 Eczema 195
18.5.9 Fungal Infections 195
18.5.10 Gastrointestinal Conditions 195
18.5.11 Hemorrhoids and Hemorrhagic Cystitis 195
18.5.12 Health Promotion 195
18.5.13 Inflammatory Conditions 196
18.5.14 Mucositis 196
18.5.15 Microbial Infections 196
18.5.16 Osteoporosis 196
18.5.17 Parkinson’s Disease 196
18.5.18 Sleep Aid/Sedation 196
18.5.19 Sore Throat 197
18.5.20 Vaginitis 197
18.5.21 Wound Healing 198
18.5.22 Quality of Life in Cancer Patients 198
18.6 Adverse Effects, Allergic Reactions, and Safety Issues With Chamomile 198
18.7 Conclusions 199
Acknowledgments 199
References 199
III. Nutritional Approaches to Therapy in Clinical Medicine in Old Age 204
19 Effects of Omega-3 on Neurodegenerative Diseases and Stroke 206
19.1 Omega-3 PUFA as a Diet Supplement 206
19.1.1 Introduction 206
19.1.2 Structure of PUFAs 206
19.1.3 From Intake to Function: Omega-3 PUFA and the Brain 207
19.2 The Aging Brain and its Relation to Omega-3 PUFA 209
19.3 Omega-3 PUFA, Neurodegenerative Diseases, and Stroke 210
19.3.1 Parkinson’s Disease 211
19.3.2 Alzheimer’s Disease 212
19.3.3 Stroke 214
19.4 Conclusions 216
References 216
20 Selenium Binding Protein 1: A Moonlighting Protein 222
20.1 Introduction 222
20.2 Selenium Binding Protein 1 222
20.2.1 Characteristics of SBP1 222
20.2.2 Selenium and SBP1 223
20.2.3 Downregulation of SBP1 in Tumorigenesis 223
20.2.4 SBP1 Loss and Cancer Prognosis 224
20.2.5 SBP1 and Neuronal Diseases 224
20.2.6 SBP1 and ROS 224
20.2.7 Other Functions of SBP1 225
20.3 Other SBPs 225
20.3.1 AP56/SBP2 225
20.3.2 Liver Fatty Acid Binding Protein 225
20.3.3 GAPDH 226
20.3.4 Mercaptopyruvate Sulfurtransferase 226
20.3.5 Rhodanese 226
20.3.6 Hemoglobin 226
20.4 Conclusions 226
References 227
21 Selenium and Senescence: Centering on Genome Maintenance 230
21.1 Introduction 230
21.2 Selenium and Selenoproteins 230
21.2.1 Selenium 230
21.2.2 Selenoproteins 231
21.2.3 Selenoprotein Functions 231
21.2.3.1 The Selenium-Dependent Glutathione Peroxidase Family 231
21.2.3.2 Thioredoxin Signaling 232
21.2.3.3 Thyroid Hormone Metabolism 232
21.2.3.4 Selenium Transportation and Storage 232
21.2.3.5 Other Notable Selenoproteins 232
21.3 Senescence 233
21.3.1 Activation of Cellular Senescence 233
21.3.1.1 Dysfunctional Telomere and Persistent DNA Damage Response 233
21.3.1.2 Acute Chromosome Conformation Changes 234
21.3.1.3 Mitogenic Stimuli 234
21.3.2 Markers of Cellular Senescence 234
21.3.2.1 SA-ß-Gal 234
21.3.2.2 DNA-SCARS 235
21.3.2.3 Increasing p16INK4 Expression 235
21.3.2.4 SAHF 235
21.3.2.5 Lamin B1 Underexpression 235
21.3.3 Transforming into SASP 236
21.3.4 Diverse Dealings of Cellular Senescence 236
21.4 ATM Activation in DNA Damage Response 237
21.5 Roles of p53 in DNA Damage and Senescence Responses 237
21.6 Pathway Crosstalk in Senescence 237
21.7 Selenium and Cellular Senescence 240
21.8 Future Perspectives 240
DISCLAIMER 241
References 241
22 Nutritional Strategies Against Sarcopenia of Aging: Current Evidence and Future Directions 250
22.1 Introduction 250
22.2 Age-Related Changes in Eating Habits 250
22.3 Current Nutritional Recommendations Against Sarcopenia 250
22.3.1 Proteins, Amino Acids, and Derivatives 250
22.3.2 Vitamin D 251
22.3.3 Creatine Monohydrate 251
22.4 New Dietary Candidates for the Management of Sarcopenia 252
22.4.1 Omega-3 Fatty Acids 252
22.4.2 Ursolic Acid 252
22.4.3 Nitrates and Nitrate-Rich Foods 252
22.5 Nutritional Strategies to Counteract Muscle Aging 253
22.5.1 Calorie Restriction Mimetics, Exercise Mimetics, and Gymnomimetics 253
22.5.2 Manipulation of the Gut Microbiota 253
22.6 Are Nutritional Supplements Always Beneficial for Muscle? The Case of Antioxidants 254
22.7 A New Way to Look at the Nutritional Regulation of Muscle Physiology: The “Pachinko Model” 254
22.8 Conclusion 255
References 255
23 Minerals and Older Adults 258
23.1 Introduction 258
23.2 Calcium 258
23.2.1 Osteoporosis 258
23.2.2 Cardiovascular Health 259
23.2.3 Cancer 260
23.2.4 Weight Management 260
23.2.5 Supplementation 260
23.3 Iron 261
23.3.1 Iron-Deficiency Anemia 261
23.3.2 Supplementation 262
23.4 Magnesium 262
23.4.1 Cardiovascular Health 263
23.4.2 Osteoporosis 263
23.4.3 Diabetes 263
23.4.4 Supplementation 264
23.5 Zinc 264
23.5.1 Immunity 264
23.5.2 Wound Healing 265
23.5.3 The Common Cold 266
23.5.4 Macular Degeneration 266
23.5.5 Supplementation 266
23.6 Selenium 267
23.6.1 Immunity 267
23.6.2 Cancer 267
23.6.3 Diabetes 268
23.6.4 Supplementation 268
23.7 Conclusion 268
References 268
24 Vitamin D and Immunity 272
24.1 Introduction 272
24.2 Overview of the Immune System 272
24.2.1 Aging of the Immune System 273
24.3 Vitamin D – Overview of its Biological Functions 274
24.4 Vitamin D and its Importance in Immunity 275
24.4.1 Vitamin D in Innate Immunity 275
24.4.2 Vitamin D in Adaptive Immunity 276
24.5 Vitamin D Deficiency: A Global Problem 278
24.6 Human Studies Investigating the Effects of Vitamin D on Immunity 278
24.6.1 Autoimmune Diseases 278
24.6.2 Influenza and Respiratory Tract Infections 279
24.7 Conclusion 279
References 280
25 Micronutrients and Ginseng for Immune Support in Older Adults 284
25.1 Introduction 284
25.2 Aging and Immune Function 285
25.3 Micronutrients and Immune Function 285
25.4 Ginseng and Immune Function 289
25.5 Conclusions 291
References 291
26 The Role of Micronutrients in Preventing Infections in the Elderly 296
26.1 Introduction 296
26.2 Micronutrients 296
26.3 Micronutrients and Immune Function 297
26.4 Effect of Micronutrient Supplements on the Aging Immune System 297
26.5 Effects of Micronutrient Supplements on the Frequency and Severity of Infections 298
26.6 Problems With Micronutrient Supplements 299
26.7 Conclusion 299
References 300
IV. Food and Supplements in Chronic Heart Diseases, Obesity, and Stroke 302
27 Dietary Protein and the Risk of Stroke 304
27.1 Introduction 304
27.2 Sources of Dietary Protein and Daily Requirements 304
27.3 Total, Animal, and Vegetable Protein 305
27.4 Red and Processed Meat 306
27.5 Fish and Poultry 307
27.6 Dairy and Eggs 308
27.7 Legumes, Nuts, and Grains 309
27.8 Dietary Patterns 310
27.9 Protein Supplementation Post-Stroke 310
27.10 Conclusion 311
Appendices 312
Appendix A: Protein Content of Select Major Protein Sources 312
Appendix B: Literature Search 313
References 313
28 Care for Stroke Patients with Eating Difficulties 316
28.1 Introduction 316
28.2 Eating Difficulties 317
28.3 Dysphagia 317
28.3.1 Oropharyngeal Neurophysiology 318
28.3.2 The Oral Phase 319
28.3.3 The Pharyngeal Phase 319
28.4 General Care and Nursing Interventions for Patients with Eating Difficulties 319
28.4.1 Screening, Assessment, and Referral 320
28.4.2 Mealtime Management 320
28.4.3 Modification of Mealtime Activities and the Dining Environment 320
28.4.4 Eating Assistance and Feeding Skills 321
28.4.5 Training and Monitoring 321
28.4.5.1 Swallow Training 321
28.4.5.2 Other Modalities 321
Orofacial Regulation Therapy 321
Body Regulation 322
Orofacial Regulation 322
Training with a Palatal Plate 322
Training with the Oral Screen IQoro 323
28.4.6 Oral Care 324
28.4.7 Nutritional Education 325
References 325
29 Homocysteine, B Vitamins, and Cardiovascular Risk 328
29.1 Homocysteine Metabolism 328
29.2 Vitamins B6, B9, and B12 328
29.2.1 Vitamin B9 328
29.2.2 Vitamin B12 329
29.2.3 Vitamin B6 330
29.3 Causes of Hyperhomocysteinemia 330
29.4 Atherothrombotic Effect of Homocysteine 330
29.5 Association of Homocysteine with Increased Cardiovascular Risk 330
29.6 Vitamin B Supplementation to Decrease Hyperhomocysteinemia 331
29.7 Safety of Vitamin B Supplementation 331
29.8 Effect of Vitamin B Supplementation on Cardiovascular Surrogate Markers 332
29.9 Effect of Vitamin B Supplementation on Cardiovascular Clinical Outcomes 332
29.10 Meta-Analyses of Large Randomized Clinical Trials of Vitamin B Supplementation 334
29.11 Vitamin B Supplementation and Cardiovascular Risk: What Went Wrong? 334
29.12 Screening for Hyperhomocysteinemia: Is it Necessary? 334
29.13 Current Status 334
References 335
30 Changes in Postprandial Blood Pressure in the Elderly 338
30.1 Introduction 338
30.2 Gastrointestinal Hormones Could be Contributing to PPH 338
30.2.1 Vasoactive Intestinal Polypeptide 339
30.2.2 Calcitonin Gene-Related Peptide 339
30.2.3 Neuropeptide Y 339
30.2.4 Other Hormones 339
30.3 Modifications in Autonomic Nervous System 339
30.4 Types of Food and PPH 340
30.5 Treatment Options 341
References 341
31 Diet Modification After Acute Coronary Events 342
31.1 Introduction 342
31.2 Dietary Recommendations for Patients Following Acute Coronary Syndromes 342
31.2.1 Dietary Fats and Lipid Profile Management 342
31.2.2 Dietary Sodium and Blood Pressure 342
31.2.3 Fruits and Vegetables 343
31.2.4 Alcohol Consumption 343
31.2.5 Other Components of Diet 343
31.3 What is the Evidence that Diet Modification Improves Outcomes? 344
31.3.1 Changing Dietary Patterns 344
31.3.2 The Mediterranean Diet 344
31.3.3 The Lyon Diet Heart Study 344
31.3.3.1 The Global Secondary Prevention Strategies to Limit Event Recurrence (GOSPEL) Study 346
31.3.4 Other Dietary Pattern Studies 346
31.4 Enriching Diets with Specific Nutrients 347
31.4.1 Studies Examining the Role of Fish and Fish Oils 347
31.4.1.1 Failure to Confirm 349
31.4.2 Dietary Fiber and Other Supplements 350
31.5 Barriers to Change 351
31.6 Final Thoughts 351
References 351
32 The Effects of Vitamin B12 and Folic Acid Deficiencies on Stroke, and Vitamin B12 and Folic Acid Supplements 354
32.1 Introduction 354
32.2 Vitamin B12 and Folic Acid Metabolism 354
32.3 Homocysteine and Cerebrovascular Diseases 355
32.4 Vitamin B12 and Folic Acid Deficiency in the Elderly 355
32.5 Low Vitamin B12 and Folic Acid Levels in Stroke in the Elderly, and Vitamin B12 and Folic Acid Supplementation 355
32.5.1 The Relation Between Low Vitamin B12 and Folic Acid Levels and Stroke in the Elderly 355
32.5.2 Vitamin B12 and Folic Acid Supplementation in Stroke in the Elderly 356
References 358
33 Nutritional Data in the Prevention and Therapy of Peripheral Arterial Disease 360
33.1 Peripheral Arterial Disease 360
33.2 Nutritional Assessment 360
33.3 Nutritional Data in Peripheral Arterial Disease 362
33.3.1 General Dietary Patterns 362
33.3.2 Weight 363
33.3.3 Anemia and Iron 364
33.3.4 Albumin 364
33.3.5 Folate and Vitamin B 364
33.3.6 Vitamin D 364
33.3.7 Niacin, L-arginine, Omega-3 Essential Fatty Acids, Amino Acids, and Antioxidants 365
33.4 Current Recommendations 365
References 366
34 Vitamin D Deficiency and Anemia in Heart Failure 368
34.1 Introduction 368
34.2 Vitamin D 368
34.2.1 Sources and Metabolism of Vitamin D 368
34.2.2 Vitamin D Status in Humans 369
34.2.3 Vitamin D Status in Heart Failure Patients 370
34.3 Heart Failure 370
34.3.1 Definition and Classification of Heart Failure 370
34.3.2 Prevalence of Heart Failure 370
34.3.3 Vicious Circle of Heart Failure 371
34.4 Heart Failure and Anemia 372
34.4.1 Definition of Anemia 372
34.4.2 Prevalence of Anemia in Heart Failure 372
34.4.3 Prognostic Relevance of Anemia in Heart Failure 372
34.5 Vitamin D and Anemia 374
34.5.1 Direct Stimulation of Erythroid Progenitors by Vitamin D 374
34.5.2 Effect on Inflammation 374
34.5.3 Folate and Iron Absorption 374
34.5.4 Epidemiological Studies 375
34.5.5 Intervention Studies 375
Conclusions 376
References 376
35 Immunoprotective Effects of Probiotics in the Elderly 382
35.1 Introduction 382
35.2 The Human Gut Microbiota 382
35.3 Aging and the Gut Microbiota 383
35.3.1 Physiological and Lifestyle Changes 383
35.3.2 Microbiota Alterations in the Elderly 384
35.4 Aging and Inflammation 385
35.5 The Gut Microbiota and Immunosenescence 385
35.6 Probiotics in the Elderly 386
35.7 Elderly Gut Care 386
35.8 Conclusion 389
References 389
Index 392

List of Contributors


Claudia Aramendi,     Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Bizkaia, Spain

Manjeshwar Shrinath Baliga,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Aysegül Bayir,     Selcuk University Faculty of Medicine, Emergency Department, Selcuklu, Konya, Turkey

Roberto Bernabei,     Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy

Adam Bernstein,     Cleveland Clinic Wellness Institute, Lyndhurst, OH, USA

Harshith P. Bhat,     Mangalore Institute of Oncology, Pumpwell Mangalore, Karnataka, India

Rekha Boloor,     Department of Microbiology, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Esther Bravo,     Department of Angiology and Vascular Surgery, Hospital de Basurto, Bizkaia, Spain

Riccardo Calvani,     Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy

Darren G. Candow,     Faculty of Kinesiology & Health Studies, University of Regina, Regina, Saskatchewan, Canada

Eva Carlsson,     Centre for Health Care Sciences, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden

Thomas W. Castonguay,     Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA

Jacob Chacko,     Department of Orthopedics, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Wen-Hsing Cheng,     Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA

Clara K. Chow,     Westmead Hospital, The George Institute, University of Sydney, Sydney, NSW, Australia

Marshall David Colin,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Agnese Collamati,     Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy

Laura de Keizer,     The George Institute, University of Sydney, Sydney, NSW, Australia

Ana Márcia Delattre,     Laboratório de Neurofisiologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil

Jennifer Doley,     Carondelet St Mary’s Hospital with TouchPoint Support Services, Tucson, AZ, USA

Prajnya D’Silva,     TotipotentRX, Gurgaon, and Center for Cellular Medicine, Gurgaon, Haryana, India

Alia El-Kadiki,     Nottingham University Teaching Hospitals, Department of Clinical Pathology, Queens Medical Centre, Derby Road, Nottingham, UK

Jana Barbara Ernst,     Clinic for Thoracic and Cardiovascular Surgery of the Heart and Diabetes Centre, North Rhine-Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany

Raja Fayad,     Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA

Farhan Fazal,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Anete Curte Ferraz,     Laboratório de Neurofisiologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil

Maria Pontes Ferreira,     Department of Nutrition & Food Science, Wayne State University, Detroit, MI, USA

Sebastião Rodrigues Ferreira-Filho,     Departamento de Clínica Médica, Universidade Federal de Uberlandia, MG, Brazil

Scott C. Forbes,     Human Kinetics, Okanagan College, Penticton, British Columbia, Canada

Athul Francis,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Fidji Gendron,     First Nations University of Canada, Regina, Saskatchewan, Canada

Sanjay Gupta

Department of Urology & Nutrition, Case Western Reserve University, Cleveland, OH, USA

Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA

Mary Hägg,     Speech & Swallowing Centre, Department of Otorhinolaryngology, Hudiksvall Hospital, Centre for Research & Development, Uppsala University/County Council of Gävleborg, Gävle and Centre for Research & Development, Umeå University, Umeå, Sweden

Raghavendra Haniadka,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Elizabeth Head,     Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA

Saeed Hosseini,     Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences, Tehran, Iran

Maite Izagirre,     Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, Bizkaia, Spain

Ramakrishna Pai Jakribettu,     Department of Microbiology, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Dipika Jayachander,     Department of Radiation Oncology, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Xiaofang Jia,     Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan

Faizan Kalekhan,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Kratika Kamath,     Department of Orthopedics, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Kamaljeet Kaur,     Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA

Kazuya Kitamori,     College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan

Wojciech Krol,     Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Poland

Ashish Kumar,     Department of Research, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Francesco Landi,     Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy

Latheesh Latheef,     Department of Orthopedics, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Silvia Maggini,     Bayer Consumer Care, Basel, Switzerland

Prajwal Prabhudev Mane,     Department of Orthopedics, Kasturba Medical College, Manipal, Udupi District, Karnataka, India

Tennille Marx,     AIBMR Life Sciences, Inc., Puyallup, WA, USA

Emanuele Marzetti,     Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy

Rashmi Teresa Mathai,     Department of General Medicine, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India

Elder Betty...

Erscheint lt. Verlag 27.1.2015
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe Diätassistenz / Ernährungsberatung
Medizin / Pharmazie Medizinische Fachgebiete Geriatrie
Naturwissenschaften Biologie
Technik Lebensmitteltechnologie
ISBN-10 0-12-418686-6 / 0124186866
ISBN-13 978-0-12-418686-6 / 9780124186866
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 11,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 9,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Unter Mitarbeit von Walter Burghardt

von Heinrich Kasper; Walter Burghardt

eBook Download (2020)
Urban & Fischer Verlag - Lehrbücher
54,99
Stoffwechsel - Bioverfügbarkeit - Diagnostik

von Klaus Günther

eBook Download (2021)
Springer Berlin Heidelberg (Verlag)
46,99