Fundamental study and industrial application of ion exchange membranes started over half a century ago. Through ongoing research and development, ion exchange membrane technology is now applied to many fields and contributes to the improvement of our standard of living. Ion Exchange Membranes, 2nd edition states the ion exchange membrane technology from the standpoint of fundamentals and applications. It discusses not only various phenomena exhibited by membranes but also their applications in many fields with economical evaluations. This second edition is updated and revised, featuring ten expanded chapters. New to this edition is a computer simulation program of ion-exchange membrane electrodialysis for water desalination that provides a guideline for designing, manufacturing and operating a practical-scale electrodialyzer. Meant to replace experiments, this program will be an important asset to those with time and monetary budgets. - New edition features ten revised and expanded chapters, providing the latest developments in ion exchange membrane technology- Computer simulation program, accessible through a companion website, provides a guideline for designing, manufacturing and operating practical-scale electrodialyzers- Attractive visual presentation, including many figures and diagrams
Front Cover 1
Ion Exchange Membranes 4
Copyright 5
Contents 6
Author Biography 22
Preface 28
Part 1 - Fundamentals 30
1 - Preparation of Ion Exchange Membranes 32
1.1 Introduction 32
1.2 Hydrocarbon Ion Exchange Membranes 33
1.3 Homogeneous Membranes 35
1.4 Heterogeneous Membranes 42
1.5 Graft Copolymerization 44
1.6 Bipolar Membranes 46
1.7 Fluorocarbon Membranes 51
References 55
2 - Fundamental Properties of Ion Exchange Membranes 58
2.1 Introduction 58
2.2 Ionic Transport Across the Membrane 58
2.3 Membrane Potential 65
2.4 Diffusion 67
2.5 Perm-Selectivity 70
2.6 Electric Conductivity 78
2.7 Osmosis 82
2.8 Electro-Osmosis 85
2.9 Ion Exchange Capacity and Water Content 87
2.10 Swelling Ratio 88
2.11 Mechanical Strength 89
2.12 Characteristics of Commercially Available Ion Exchange Membranes 89
References 93
3 - Theory of Teorell, Meyer, and Sievers (TMS Theory) 96
3.1 Introduction 96
3.2 Membrane Potential 96
3.3 Diffusion Coefficient 98
3.4 Electric Conductivity 100
3.5 Transport Number 101
References 102
4 - Irreversible Thermodynamics 104
4.1 Introduction 104
4.2 Phenomenological Equation and Phenomenological Coefficient 104
4.3 Membrane Phenomena 107
4.4 Reflection Coefficient 109
4.5 Electrodialysis Phenomena 110
4.6 Separation of Salt and Water by Electrodialysis 113
References 114
5 - Overall Mass Transport 116
5.1 Introduction 116
5.2 Electrodialysis of Saline Water and Overall Mass Transport Equation 116
5.3 Ion Exchange Membrane Pair Characteristics 118
5.4 Overall Mass Transport and Electrodialysis of Seawater 120
5.5 Overall Mass Transport Equation and Phenomenological Equation 122
5.6 Reflection Coefficient of Ion Exchange Membranes 124
References 128
6 - Concentration Polarization 130
6.1 Introduction 130
6.2 Current–Voltage (I–V) Relationship 130
6.3 Concentration Changes in a Boundary Layer 133
6.4 Mass Transport in a Boundary Layer 135
6.5 Space Charge 138
6.6 Gravitational Convection 139
6.7 Electroconvection 141
6.8 Fluctuation 142
6.9 Concentration Polarization Generated on a Concentrating Surface of an Ion Exchange Membrane 147
References 149
7 - Water Dissociation 152
7.1 Introduction 152
7.2 Current–pH Relationship 152
7.3 Diffusional Model 154
7.4 Repulsion Zone 155
7.5 Wien Effect 156
7.6 Protonation and Deprotonation Reaction 157
7.7 Experimental Research on the Water Dissociation Reactions 158
7.8 Mechanism of the Water Dissociation Reaction 173
References 187
8 - Hydrodynamics 190
8.1 Introduction 190
8.2 Stream Lines Around a Spacer 190
8.3 Mass Transport Effect of a Spacer 191
8.4 Dead Space Around a Spacer and Limiting Current Density 195
8.5 Flow Pattern Image in a Flow Channel 197
8.6 Flow Pattern and Limiting Current Density 198
8.7 Local Flow Distribution in a Flow Channel 199
8.8 Solution Velocity Distribution Between Desalting Cells 201
8.9 Air Bubble Cleaning of a Flow Channel 205
8.10 Solution Flow and Mass Transport in a Channel without a Spacer 206
8.11 Velocity Profile in a Flow Channel with a Spacer 208
8.12 Spacer Mesh Step Model and Mass Transport in a Boundary Layer 212
8.13 Spacer Geometry and Pressure Drop in a Flow Channel 214
8.14 Friction Factor of a Solution and Solution Velocity Distribution in Each Desalting Cell () 215
8.15 Pressure Distribution in a Duct in an Electrodialyzer () 221
References 226
9 - Limiting Current Density 228
9.1 Introduction 228
9.2 Nernst Diffusion Model 228
9.3 Limiting Current Density Equation Introduced from the Nernst–Planck Equation 231
9.4 Limiting Current Density Equation Introduced by Means of Chemical Engineering Techniques 232
9.5 Dependence of Limiting Current Density on Salt Concentration, Solution Velocity, and Temperature 239
9.6 Limiting Current Density of an Electrodialyzer 242
References 243
10 - Leakage 244
10.1 Introduction 244
10.2 Electric Current Leakage 244
10.3 Solution Leakage () 252
References 256
11 - Membrane Deterioration 258
11.1 Introduction 258
11.2 Membrane Characteristic Stability Against Various Agents 258
11.3 Performance Changes of Ion Exchange Membranes in Long-term Seawater Electrodialysis 263
11.4 Surface Fouling 266
11.5 Organic Fouling 272
References 280
Part 2 - Applications 282
12 - Electrodialysis 284
12.1 Overview of Technology 284
12.2 Electrodialyzer 284
12.3 Maintenance Technology 290
12.4 Practice 294
References 321
13 - Computer Simulation Program: Single-Pass (Continuous) Program 324
13.1 Introduction 324
13.2 Single-Pass (Continuous) ED Process 325
13.3 Mass Transport in Single-Pass (Continuous) Process 326
13.4 Specifications and Operating Conditions of an Electrodialyzer 327
13.5 Overall Mass Transport Equation and Membrane Characteristics (Sections 5.2 and 5.3) 328
13.6 Salt Concentration and Linear Velocity in Desalting Cells 329
13.7 Salt Concentration and Linear Velocity in Concentrating Cells 331
13.8 Physical Properties of Solutions in Desalting and Concentrating Cells 332
13.9 Electric Resistance of an Ion Exchange Membrane Pair and Solutions in Desalting and Concentrating Cells (Section 2.6.3) 332
13.10 Pressure Drop in Desalting and Concentrating Cells and Slots (Section 8.13) 333
13.11 Current Density Distribution 334
13.12 Cell Voltage, Energy Consumption, Water Recovery, and Desalting Ratio 338
13.13 Limiting Current Density (Sections 9.5 and 9.6) 338
13.14 ED Program 340
13.15 Companion Site (Chapter 24) 345
13.16 Process Specifications and ED Conditions 345
13.17 Computed Results 346
References 350
14 - Computer Simulation Program: Feed-and-Bleed Program 352
14.1 Introduction 352
14.2 Feed-and-Bleed Process 352
14.3 Specifications and Operating Conditions of an Electrodialyzer 353
14.4 Functions and Performance of an Electrodialyzer 354
14.5 Mass Balance and Energy Consumption in the Feed-and-Bleed Process () 354
14.6 Electrodialysis Program 355
14.7 Companion Site (Chapter 24) 357
14.8 Process Specifications and ED Conditions 357
14.9 Computed Results 358
References 361
15 - Computer Simulation Program: Batch Program 362
15.1 Introduction 362
15.2 Batch Electrodialysis Process 363
15.3 Specifications and Operating Conditions of an Electrodialyzer 363
15.4 Performance of an Electrodialyzer: Step 1 () 363
15.5 Relationship between Operation Time and the Performance of an Electrodialyzer in a Batch Operation: the Open/Shut Solution ... 367
15.6 Program and Computation with Companion Site (Chapter 24) 370
References 372
16 - Electrodialysis Reversal 374
16.1 Overview of Technology 374
16.2 Spacer 374
16.3 Water Recovery 378
16.4 Prevention of Scale Formation 379
16.5 Anti-Organic Fouling 380
16.6 Colloidal Deposit Formation on the Membrane Surface and Its Removal 382
16.7 Nitrate and Nitrite Removal 383
16.8 Practice 385
References 395
17 - Bipolar Membrane Electrodialysis 398
17.1 Overview of Technology 398
17.2 Free Energy Changes in BMP Electrodialysis Process 400
17.3 Interface Layer 401
17.4 Structural Heterogeneity of the Membrane Surface 402
17.5 Water Dissociation Reaction 403
17.6 Current Efficiency 405
17.7 Energy Consumption and Production Capacity 407
17.8 Water Transfer 408
17.9 Rectification Effect 411
17.10 Desirable Properties and Operational Problems in BMP Electrodialysis Process 412
17.11 Practice 413
References 419
18 - Electro-Deionization 422
18.1 Overview of Technology 422
18.2 Mixed-Bed, Layered-Bed, and Separated-Bed 424
18.3 Structure of the Electrodeionization Unit and Energy Consumption 426
18.4 Mass Transport and Water Dissociation 427
18.5 Removal of Weakly Ionized Species 430
18.6 Practice 434
References 441
19 - Electrolysis 444
19.1 Overview of Technology 444
19.2 Ion Exchange Membrane 446
19.3 Mass Transport and Electrode Reactions in an Electrolysis System 451
19.4 Electrolyzer and Its Performance 455
19.5 Purification of Saltwater 459
19.6 Research and Development 464
References 464
20 - Diffusion Dialysis 466
20.1 Overview of Technology 466
20.2 Transport Phenomena 466
20.3 Diffusion Dialyzer and Its Operation 468
20.4 Practice 470
References 473
21 - Donnan Dialysis 474
21.1 Overview of Technology 474
21.2 Mass Transport 475
21.3 Practice 481
References 485
22 - Fuel Cell 488
22.1 Overview of Technology 488
22.2 Principle 488
22.3 Parts of a Fuel Cell 491
22.4 Performance of Fuel Cells 495
22.5 Practice 496
References 499
23 - Redox Flow Battery 500
23.1 Overview of Technology 500
23.2 Principle 500
23.3 Advantages and Disadvantages of the Redox Flow Battery 502
23.4 Parts of the Redox Flow Battery 504
23.5 Ion Exchange Membrane 505
23.6 Operation 508
23.7 Practice 508
References 512
24 - Companion Site 516
24.1 Introduction 516
24.2 Companion Site 516
24.3 Web Site Address 517
Index 518
Author Biography
Yoshinobu Tanaka
Educational Career
Professional Experience
Degree
Activation in Academic Societies
Award
Electrodialysis. In: Theory and Design of Membrane Separation Process. Tokyo: Industrial Publishing & Consulting Inc.; 1993.
Electrodialysis in membrane separation. In: Membrane Separation Technology Handbook. Tokyo: Industrial Publishing & Consulting Inc.; 1990.
Fundamental theory and experimental method in ion exchange membrane electrodialysis. In: Advanced Membrane Separation Technology Handbook. Tokyo: Science Forum Co.; 1987.
Ion exchange and ion exchange membranes. In: Functions and Applications of Ion Exchange Membranes. Tokyo: Industrial Publishing & Consulting Inc.; 2004.
Ion exchange membranes: fundamentals and applications first ed. 2007. In: Membrane Science Technology Series 12. Amsterdam: Elsevier; 2010 The book is translated into Chinese and published from Chemical Engineering Publication, Beijing.
Ion exchange membrane experimental method. In: Membrane Science Experimental Method. Tokyo: Kitami Shobo Co.; 1984.
Ion Exchange Membrane Electrodialysis: Fundamentals, Desalination, Separation. New York: Nova Science Publishers; 2010.
Ion exchange membrane salt production. In: Sea Water, its Property and Technology. Tokyo: Tokai University Press; 1994.
Ion exchange membrane separation technology. In: Ion Exchange: Fundamentals of Advanced Separation Technology. Tokyo: Kodansya Scientific Co.; 1991.
Mass transport in ion exchange membrane. In: Encyclopedia of Membrane Science Technology. Hoboken: John Wiley & Sons; 2013.
Principles of ion exchange membrane electrodialysis for saline water desalination. In: Ion Exchange Technology. New York: Springer; 2012.
Resources dissolving in seawater. In: Advanced Membrane Treatment Technology and its Applications. Tokyo: Fuji Techno System Co; 1984.
Acceleration of water dissociation generated in an ion exchange membrane. J. Membr. Sci. 2007;303:234–243.
A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water. Desalination. 2009;249:809–821.
A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water. Desalination. 2009;249:1039–1047.
A computer simulation of feed and bleed ion exchange membrane electrodialysis for desalination of saline water. Desalination. 2010;254:99–107.
A computer simulation of ion exchange membrane electrodialysis for concentration of seawater. Membr. Water Treat. 2010;1:13–37.
Boundary layer phenomena in ion exchange membrane electrodialysis. Chem. Eng. 1993;38:342–346.
Concentration polarization and water dissociation in ion exchange membrane electrodialysis. J. Electrochem. Soc. Jpn. 1974;42:450–456 43, 1975, 584–588: 50, 1982, 667–672; 821–824: 51, 1983, 465–470; 267–271.
Changes of membrane electric resistance and water dissociation generation in the treatment giving low permeability for bivalent ions to cation exchange membranes. Bull. Soc. Sea Water Sci. Jpn. 1977;31:123–127.
Current density distribution around an insulator in an ion exchange membrane electrodialyzer. Bull. Soc. Sea Water Sci. Jpn. 1984;37:295–298.
Concentration polarization and water dissociation in ion-exchange membrane electrodialysis: mechanism of water dissociation. J. Chem. Soc. Faraday Trans. 1. 1986;82:2065–2077.
Concentration polarization in ion exchange membrane electrodialysis. J. Membr. Sci. 1991;57:217–235.
Concentration polarization in a substance layer attached to an ion exchange membrane. Bull. Soc. Sea Water Sci. Jpn. 1997;51:228–236.
Concentration polarization, limiting current density and water dissociation in ion exchange membrane electrodialysis. J. Ion. Exch. 1997;8:14–28.
Current density distribution and limiting current density in ion-exchange membrane electrodialysis. J. Membr. Sci. 2000;173:179–190.
Current density distribution, limiting current density and saturation current density in an ion-exchange membrane electrodialyzer. J. Membr. Sci. 2002;210:65–75.
Concentration polarization in ion-exchange membrane electrodialysis – the events arising in a flowing solution in a desalting cell. J. Membr. Sci. 2003;216:149–164.
Concentration polarization in ion-exchange membrane electrodialysis, the events arising in an unforced flowing solution in a desalting cell. J. Membr. Sci. 2004;244:1–16.
Continuous ion-exchange membrane electrodialysis of mother liquid from a salt-manufacturing plant and transport of Cl− ions and so42− ions. Membr. Water Treat 3, 2012, 63–76.
Distribution of electrodialytic conditions and limiting current density in ion exchange membrane electrodialyzer. J. Electrochem. Soc. Jpn. 1977;45:16–21.
Distribution of electrodialytic conditions in an electrodialyzer and limiting current density. J. Membr. Sci. 1994;92:217–228.
Development of a computer simulation program of batch ion-exchange membrane electrodialysis for saline water desalination. Desalination. 2013;320:118–133.
Development of a computer simulation program of feed-and-bleed ion-exchange membrane electrodialysis for saline water desalination. Desalination. 2014;342:126–138.
Electrodialysis of solutions of high-temperature and high-concentration with ion exchange membranes. Bull. Soc. Sea Water Sci. Jpn. 1970;24:104–128 25, 1971, 189–197: 26, 1972, 74–83.
Effect of electric field in the treatment giving low permeability for bivalent ions to cation exchange membranes. Bull. Soc. Sea Water Sci. Jpn. 1978;32:95–99.
Effects of temperature on ion exchange membrane electrodialysis. Bull. Soc. Sea Water Sci. Jpn. 1980;34:31–36.
Electrodialysis process in a salt manufacturing plant. Bull. Soc. Sea Water Sci. Jpn. 1980;34:61–90.
Electrochemical studies on ion exchange membranes and electrodialysis phenomena. Bull. Soc. Sea Water Sci. Jpn. 1985;38:257–282.
Electrochemical properties of ion exchange membranes. Ionics. October 1985:151–162.
Effect of red tide on limiting current density. Bull. Soc. Sea Water Sci. Jpn. 1993;47:4–10.
Electrochemical dissociation of water molecules generated in an interfacial layer on an ion exchange membrane. Bull. Soc. Sea Water Sci. Jpn. 1993;47:242–247.
Ionic transport in a boundary layer in ion exchange membrane electrodialysis. J. Ion. Exch. 1998;9:2–13.
Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant. J. Membr. Sci. 2003;222:71–86.
Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis. J. Membr. Sci. 2006;281:517–531.
Ion-exchange membrane electrodialysis for saline water desalination and its application to seawater concentration. Ind. Eng. Chem. Res. 2011;50:7494–7503.
Ion-exchange membrane electrodialysis of saline water and its numerical analysis. Ind. Eng. Chem. Res. 2011;50:10765–10777.
Ion-exchange membrane electrodialysis program and its application to multi-stage continuous saline water desalination. Desalination. 2012;301:10–25.
Limiting current density in the ion exchange membrane electrodialysis. Bull. Soc. Sea Water...
Erscheint lt. Verlag | 19.1.2015 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
Naturwissenschaften ► Chemie ► Technische Chemie | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-444-66321-5 / 0444663215 |
ISBN-13 | 978-0-444-66321-4 / 9780444663214 |
Haben Sie eine Frage zum Produkt? |
Größe: 31,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 27,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich