An Introduction to Neural Network Methods for Differential Equations - Neha Yadav, Anupam Yadav, Manoj Kumar

An Introduction to Neural Network Methods for Differential Equations

Buch | Softcover
114 Seiten
2015 | 2015 ed.
Springer (Verlag)
978-94-017-9815-0 (ISBN)
37,44 inkl. MwSt
Jetzt zum Sonderpreis
Listenpreis (bisher): 74,89 €
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications.

The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field.



Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.

Dr. Neha Yadav, Assistant Professor (Mathematics), Department of Applied Science, ITM University Gurgaon, Haryana-122017, India. Specialization: Numerical Analysis and Soft Computing Techniques, Differential Equations, Boundary Value Problems. Total Experience: 03 Years Teaching and 04 years Research Experience. Research Papers in Refereed SCI journals : 03 (Published), 03 (Submitted). Awards and Prizes: (i) Travel Award from CSIR-HRDG and NBHM (Govt. of India) to visit University of Strathclyde, Glasgow, U.K. in the year 2013. (ii) Qualified UGC-NET JRF in the year 2010. (iii) Selected for half financial to participate in “School and Conference on Computation Methods in Dynamics” at Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, from 20 June to 8 July 2011. (iv) Selected for MHRD Institute Fellowship in PhD at MNNIT Allahabad. (v) Selected for Summer Research Fellowship Programme jointly sponsored by IASc (Bangalore), INSA(New Delhi) and NASI(Allahabad). Dr. Anupam Yadav, Assistant Professor (Mathematics). National Institute of Technology Uttarakhand. Pauri Garhwal, Uttarakhand - 246174. Specialization: Soft Computing Techniques, Swarm Intelligence, Artificial Intelligence. Area of Research: Optimization, Operations Research. Research Papers in Refereed SCI journals : 04 (Published), 04 (Submitted). Awards: Award from NBHM-DAE (Govt. of India) to visit Glasgow, U. K. in the year 2013. Award from CSIR-HRDG (Govt. Of India) to visit Taipei, Taiwan in the year 2011. CSIR – JRF (Mathematical Sciences) in the year 2009. GATE – 2009 with All India Rank 95. Positions held: Asst. Professor National Institute of Technology Uttarakhand, India. Research Professor: DPST Center, Korea University, Seoul, South Korea. Senior Research Fellow: IIT Roorkee, India. Junior Research Fellow: IIT Roorkee, India. Dr. Manoj Kumar, Associate Professor (Mathematics), Motilal Nehru National Institute of Technology, Allahabad, India-211004. Specializations: Numerical Analysis and Computer Application, Simulation & Modeling. Area of Research: Numerical Analysis/Operation Research/Mathematical Modeling/Partial Differential Equations/ Computational Fluid Dynamics. Teaching Experience : Since 2001 teaching B.Tech, M.Tech, MCA classes and guiding PhD/ Post-Doctoral Students. Research Papers in Refereed SCI Journals:  67. PhD Student Guided: 09 (Awarded) , 02(Work in Progress). Post-Doctoral Guidance:04. Independent Research Grants: 04. Reviewer of International Journals: 11.

Preface.- Introduction.- 1 Overview of Differential Equations.- 2 History of Neural Networks.- 3 Preliminaries of Neural Networks.- 4 Neural Network Methods for Solving Differential Equations.- Conclusion.- Appendix.- References.- Index.

Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Computational Intelligence
Zusatzinfo 21 Illustrations, black and white; XIII, 114 p. 21 illus.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie
Schlagworte Cellular Neural Network • Finite Element Neural Network • History of Neural Networks • Learning in Neural Networks • Mathematical Model of Neural Network • Multilayer Perceptron • Neural Network Architecture • Neural network methods for differential equations • radial basis functions • Wavelet Neural Network
ISBN-10 94-017-9815-X / 940179815X
ISBN-13 978-94-017-9815-0 / 9789401798150
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99