Cellular and Molecular Neurophysiology -  Constance Hammond

Cellular and Molecular Neurophysiology (eBook)

eBook Download: PDF | EPUB
2014 | 4. Auflage
444 Seiten
Elsevier Science (Verlag)
978-0-12-397322-1 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
108,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
* Now in full color throughout, with over 400 carefully selected and constructed illustrations
* A concise but in-depth explanation of molecular properties and functions of excitable cells
* Includes appendices describing neurobiological techniques
* Provides a companion website presenting the figures for use in lectures

Constance Hammond is an INSERM director of research at the Mediterranean Institute of Neurobiology. A renowned Parkinson's disease investigator, in 2012 she became a Chevalier of the Légion d'Honneur in recognition for her services to scientific communication. Studying biology at the University of Pierre and Marie Curie and the Ecole Normale Supérieure in Paris she completed her thesis in neurosciences at the Marey Institute in Paris, directed by Prof. D. Albe-Fessard. Guided by her curiosity and her constant desire to learn, she changed lab and research domains several times. With the knowledge of other systems and the mastering of other techniques she finally came back to her first and preferred subject of research; the role of the subthalamic nucleus in the basal ganglia system in health and Parkinson's disease.
After many years of lecturing neurobiology to biology and psychology students it became apparent that students were in need of a book to help understand the basic principles of cell electrophysiology. Discussions with Philippe Ascher convinced her that the best way to approach the subject was to explain ionic currents and potential changes in terms of single channels and unitary currents, describing pioneering neurobiological experiments. This first book 'Neurobiologie Cellulaire' (written in French with her colleague Danièle Tritsch) appeared in 1990. Its immediate success inspired her to completely revise the book content and publish it in English giving it to a larger audience; Appearing in 1996 the fist edition of 'Cellular and Molecular Neuroscience' was born.
Cellular and Molecular Neurophysiology, Fourth Edition, is the only up-to-date textbook on the market that focuses on the molecular and cellular physiology of neurons and synapses. Hypothesis-driven rather than a dry presentation of the facts, the book promotes a real understanding of the function of nerve cells that is useful for practicing neurophysiologists and students in a graduate-level course on the topic alike. This new edition explains the molecular properties and functions of excitable cells in detail and teaches students how to construct and conduct intelligent research experiments. The content is firmly based on numerous experiments performed by top experts in the field This book will be a useful resource for neurophysiologists, neurobiologists, neurologists, and students taking graduate-level courses on neurophysiology. 70% new or updated material in full color throughout, with more than 350 carefully selected and constructed illustrations Fifteen appendices describing neurobiological techniques are interspersed in the text

Chapter 1

Neurons


Constance Hammond

Abstract


Neurons are independent cells making specific contacts called synapses, with hundreds or thousands of other neurons sometimes greatly distant from their cell bodies. The neurons connected together form circuits, and so the nervous system is composed of neuronal networks which transmit and process information. Neurons are excitable cells. Depending on the information they receive, neurons generate electrical signals and propagate them along their processes. This capacity is due to the presence of particular proteins in their plasma membrane which allow the selective passage of ions: the ion channels. Neurons are also secretory cells. Their secretory product is called a neurotransmitter. The release of a neurotransmitter occurs only in restricted regions, the synapses. The neurotransmitter is released in the extracellular space. The synaptic secretion is highly focalized and directed specifically on cell regions to which the neuron is connected. The synaptic secretion is then different (with only a few exceptions) from other secretory cells, such as from hormonal and exocrine cells which respectively release their secretory products into the general circulation (endocrine secretion) or the external environment (exocrine secretion).

Keywords


axon
axon terminal
axonal transport
dendrite, dendritic spine
dendritic transport
dynein
excitable cell
Golgi type I neuron
Golgi type II neuron
kinesin
network
secretory cell
synapse

Outline

By using the silver impregnation method developed by Golgi (1873), Ramon y Cajal studied neurons, and their connections, in the nervous system of numerous species. Based on his own work (1888) and that of others (e.g. Forel, His, Kölliker and Lenhossék), he proposed the concept that neurons are isolated units connected to each other by contacts formed by their processes: ‘The terminal arborizations of neurons are free and are not joined to other terminal arborizations. They make contacts with the cell bodies and protoplasmic processes of other cellular elements.’
As proposed by Cajal, neurons are independent cells making specific contacts called synapses, with hundreds or thousands of other neurons sometimes greatly distant from their cell bodies. The neurons connected together form circuits, and so the nervous system is composed of neuronal networks which transmit and process information. In the nervous system, there is another class of cells, the glial cells, which surround the various parts of neurons and cooperate with them. Glial cells are discussed in Chapter 2.
Neurons are excitable cells. Depending on the information they receive, neurons generate electrical signals and propagate them along their processes. This capacity is due to the presence of particular proteins in their plasma membrane which allow the selective passage of ions: the ion channels.
Neurons are also secretory cells. Their secretory product is called a neurotransmitter. The release of a neurotransmitter occurs only in restricted regions, the synapses. The neurotransmitter is released in the extracellular space. The synaptic secretion is highly focalized and directed specifically on cell regions to which the neuron is connected. The synaptic secretion is then different (with only a few exceptions) from other secretory cells, such as from hormonal and exocrine cells which respectively release their secretory products into the general circulation (endocrine secretion) or the external environment (exocrine secretion). Synapses are discussed in Chapter 6.
Neurons are quiescent cells. When lesioned, most neurons cannot be replaced, since they are postmitotic cells. Thus, they renew their constituents during their entire life, involving the precise targeting of mRNAs and proteins to particular cytoplasmic domains or membrane areas.

1.1. Neurons have a cell body from which emerge two types of processes: the dendrites and the axon


Although neurons present varied morphologies, they all share features that identify them as neurons. The cell body or soma gives rise to processes which give the neuron the regionalization of its functions, its polarity and its capacity to connect to other neurons, to sensory cells or to effector cells.

1.1.1. The somatodendritic tree is the neuron’s receptive pole


The soma of the neuron contains the nucleus and its surrounding cytoplasm (or perikaryon). Its shape is variable: pyramidal soma for pyramidal cells in the cerebral cortex and hippocampus; ovoid soma for Purkinje cells in the cerebellar cortex; granular soma for small multipolar cells in the cerebral cortex, cerebellar cortex and hippocampus; fusiform soma for neurons in the pallidal complex; and stellar or multipolar soma for motoneurons in the spinal cord (Figure 1.1).
Figure 1.1 The neurons of the central nervous system present different dendritic arborizations.
(a) Photomicrographs of neurons in the central nervous system as observed under the light microscope. A – Purkinje cell of the cerebellar cortex; B – pyramidal cell of the hippocampus; C – soma of a motoneuron of the spinal cord. Golgi (A and B) and Nissl (C) staining. The Golgi technique is a silver staining which allows observation of dendrites, somas and axon emergence. The Nissl staining is a basophile staining which displays neuronal regions (soma and primary dendrites) containing Nissl bodies (parts of the rough endoplasmic reticulum). (b) Camera lucida drawings of neurons in the central nervous system of primates, revealed by the Golgi silver impregnation technique and reconstructed from serial sections: St, medium spiny neuron of the striatum; GP, neuron of the globus pallidus; Th, thalamocortical neuron; STN, neuron of the subthalamic nucleus; IO, neurons of the inferior olivary complex; Pu, Purkinje cell of the cerebellar cortex; SNc, dopaminergic neuron of the substantia nigra pars compacta. All these neurons are illustrated at the same magnification. Photomicrographs by Francoise Condé (aA), Olivier Robain (aB) and Paul Derer (aC). Drawings by Jérôme Yelnik, except OL and PU by Ramon Y Cajal (1911).
One function of the soma is to ensure the synthesis of many of the components required for the structure and function of a neuron. Indeed, the soma contains all the organelles responsible for the synthesis of macromolecules. Most neurons in the central nervous system cannot further divide or regenerate after birth, and the cell body must maintain the structural integrity of the neuron throughout the individual’s entire life. Moreover, the soma receives numerous synaptic contacts from other neurons and constitutes, with the dendrites, the main receptive area of neurons (see Figure 1.5 and Section 6.2). The neurons have one or several processes emerging from the cell body and arborizing more or less profusely. The two types of neuronal processes are the dendrites and the axon (Figures 1.1 and 1.3). This division is based on morphological, ultrastructural, biochemical and functional criteria.
The dendrites, when they emerge from the soma, are simple perikaryal extensions, the primary dendrites. On average, between one and nine primary dendrites emerge from the soma and then divide successively to give a dendritic tree with specific characteristics (number of branches, volume, etc.) for each neuronal population (Figures 1.1 and 1.2). The dendrites are morphologically distinguishable from axons by their irregular outline, by their diameter, which decreases along their branchings, by the acute angles between the branches, and by their ultrastructural characteristics (Figures 1.1, 1.3 and 1.7). The irregular outline of dendrites is related to the presence of numerous appendices of various shapes and dimensions at their surface. The most frequently observed are the dendritic spines which are lateral expansions with ovoid heads binding to the dendritic branches by a peduncle that is variable in length (Figure 1.3). Some neurons are termed ‘spiny’ because there are between 40 000 and 100 000 spines on the surface of their dendrites (e.g. pyramidal...

Erscheint lt. Verlag 15.1.2015
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-12-397322-8 / 0123973228
ISBN-13 978-0-12-397322-1 / 9780123973221
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 107,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 27,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
109,99

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Thieme (Verlag)
109,99