Current Trends of Optics and Photonics (eBook)

Cheng-Chung Lee (Herausgeber)

eBook Download: PDF
2014 | 2015
XXIII, 542 Seiten
Springer Netherlands (Verlag)
978-94-017-9392-6 (ISBN)

Lese- und Medienproben

Current Trends of Optics and Photonics -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers' awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.



Professor Cheng-Chung Lee received his BS and MS degrees in physics from Cheng-Kung University, Taiwan, and Ph D degree from Optical Sciences Center, University of Arizona, USA in 1969, 1974 and 1983, respectively. He was the founder and the Chair of the Department of Optics and Photonics, and Thin Film Technology Center of National Central University, Chung Li, Taiwan. His research interest is primarily involved in the fundamental investigation and application of Optical Thin Films and Interferometry. He has serviced as, Chair of SPIE Fellows Committee and Chair of OSA Taiwan Local Section. For his academic achievements, Prof. Lee has been elected as an SPIE Fellow in 2006 and an OSA Fellow in 2007.
Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers' awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.

Professor Cheng-Chung Lee received his BS and MS degrees in physics from Cheng-Kung University, Taiwan, and Ph D degree from Optical Sciences Center, University of Arizona, USA in 1969, 1974 and 1983, respectively. He was the founder and the Chair of the Department of Optics and Photonics, and Thin Film Technology Center of National Central University, Chung Li, Taiwan. His research interest is primarily involved in the fundamental investigation and application of Optical Thin Films and Interferometry. He has serviced as, Chair of SPIE Fellows Committee and Chair of OSA Taiwan Local Section. For his academic achievements, Prof. Lee has been elected as an SPIE Fellow in 2006 and an OSA Fellow in 2007.

Preface 6
Contents 10
Contributors 19
Part I Optical Thin Films and Metamaterials 24
1 Thin Film Optical Coatings 25
1.1 Introduction 25
1.2 Extra-High Reflection Coating with Negative Extinction Coefficient 26
1.3 Narrow Band Pass Filter for Optical Communication with the Half-Peak Bandwidth in Order of Nanometer 29
1.4 Antireflection Coating (AR Coating) 33
1.5 Coatings with Negative Refractive Index Layer 38
1.6 Optical Monitoring 41
1.6.1 In Situ Sensitive Optical Monitoring with Error Compensation (ISMEC) 42
1.6.2 Optical Monitoring and Real Time Admittance Loci Calculation Through Dynamic Interferometer 43
1.6.3 Optical Monitoring Using Admittance Diagram 46
1.6.4 Broadband Monitoring Through Equivalent Optical Admittance Loci Observation 47
1.6.5 Reflection Coefficient Monitoring Through Broadband Spectrum 49
1.7 Summary 51
References 53
2 Metamaterials and Transformation Optics 56
2.1 Introduction 56
2.2 Negative Refraction, Flat Lens, and Perfect Lens 57
2.3 Photonic Crystals and Subwavelength Imaging 63
2.4 Resonance, Constraints, and Metamaterials 64
2.5 Indefinite MediaHyperbolic Metamaterials and Hyperlens 70
2.6 Invisibility Cloak and Transformation Optics 73
2.7 Summary 77
References 78
Part II Progress in Short-Pulse Yb-doped Fiber Oscillators and Amplifiers 80
3 Progress in Short-Pulse Yb-Doped Fiber Oscillators and Amplifiers 81
3.1 Introduction 81
3.2 The MOPA Approach to High-Power Short-Pulse Yb-Doped Fiber Lasers 83
3.2.1 Theoretical Analysis and System Design 84
3.2.2 Picosecond Laser Seeder 87
3.2.3 Multi-Stage Fiber Laser Amplifiers 90
3.2.4 MOPA Performance 92
3.2.5 Mode-Locked Yb-Doped Fiber Laser 96
3.2.6 Noise-Like Pulse Generation from a YDF Laser 100
3.2.7 Supercontinum Generation by the Noise-Like Pulsed YDF Laser 104
3.2.8 Nonlinear Conversion of Picosecond Bursts from Yb-Doped Fiber Laser Amplifiers 109
3.3 Conclusions 116
References 117
Part III Optical Communications 121
4 Visible Light Communication 126
4.1 Worldwide VLC Activities 126
4.2 Different Technical Aspects of VLC 128
4.2.1 Enhancing Transmission Data Rate 128
4.2.2 Mitigation of Optical Background Noises 132
4.2.3 Bi-Directional Transmission 135
4.2.4 Using AC-LED for VLC 137
4.3 Summary 139
References 139
5 Fiber-Wireless Communication 141
5.1 Development Progress on Fiber-Wireless Communications 142
5.2 WDM Visible Light Communication Systems 144
5.3 Integrating FTTH and Free-Space VLC Transport Systems 148
5.3.1 Integrating OFDM FTTH and Free-Space VLC Transmission 148
5.3.2 Optimizing FTTH and Free-Space VLC Integration System 149
5.3.3 Long-Haul SMF and Optical Free-Space Transmissions 151
5.4 Summary 154
References 154
6 Colorless Laser Diodes for DWDM-PON Transmission 156
6.1 Historical Review and Challenges on Injection-Locked Laser Diode Transmitters for DWDM-PON Transmission 156
6.1.1 Historical Review on the Roadmap of Injection-Locked Transmitters for DWDM-PON 156
6.1.2 Development of a Promising Universal Transmitter for Colorless Operation in DWDM-PON 158
6.1.3 Using Long-Cavity Colorless Laser Diodes for OOKOFDM Transmission in DWDM-PON 160
6.2 OOK or OFDM Data Transmission Performances of Directly Modulated Slave WRC-FPLD Injection-Locked by Master Sources with Different Degrees of Coherence 162
6.2.1 Methods for Building up the DWDM-PON with Directly Modulated Slave WRC-FPLD Injection-Locked by Master Sources with Different Degrees of Coherence 162
6.2.2 The Effect of the Injection Coherence on Mode, Noise Characteristics and Frequency Response 163
6.2.3 The Effect of Injection Coherence on OOK Transmission Performances of the Slave WRC-FPLD Laser Transmitter with Different-Locking Master Sources 166
6.3 Summary 172
References 173
7 Cost-Effective OFDM Transmission Technologies for Long-Reach PONs 176
7.1 Introduction to the OFDM for Long-Reach PONs 176
7.2 Theory of SSII and SSII Cancellation Technique 182
7.3 Experimental Setup and Results 184
7.4 Conclusion 189
References 190
Part IV Light Emitting Diodes 193
8 Light Emitting Diodes 194
8.1 LED History and Application 195
8.2 Improvement of Droop and Internal Quantum Efficiency for GaN-Based LEDs by Epitaxial Technology 196
8.2.1 Introduction 197
8.2.2 Nanoscale Epitaxial Patterned Template 198
8.2.2.1 Nanoscale Epitaxial Lateral Overgrowth of GaN-Based Light-Emitting Diodes on a SiO2 Nanorod-Array Patterned Sapphire Template 198
8.2.2.2 Highly Efficient and Bright LEDs Overgrown on GaN Nanopillar Substrates 201
8.2.2.3 Gallium Nitride-Based Light-Emitting Diodes with Embedded Air Voids Grown on Ar-implanted AlNSapphire Substrate 205
8.2.3 Low Efficiency Droop Epitaxial Structures 208
8.2.3.1 GaN-Based LEDs with a Chirped Multiquantum Barrier Structure 208
8.2.3.2 InGaN-based Light Emitting Diodes with an AlGaN Staircase Electron Blocking Layer 211
8.3 LED Light Extraction Improvement 215
8.3.1 Improvement in Transparent Conductive Layer with ITO Material and Patterned Structure 216
8.3.2 Enhanced Light Extraction Efficiency Using Flip-Chip Structure 222
8.3.3 High-Efficiency LED Chip with High-Voltage Structure 228
8.4 LED Package for Better CCT, UV LED and QDs Application 230
8.4.1 General Introduction of a LED Package 231
8.4.2 Improvement in Uniformity of Emission by ZrO2 Nano-Particles for White LEDs 233
8.4.3 Enhanced Luminous Efficiency of WLEDs Using a Dual-Layer Structure of the Remote Phosphor Package 236
8.4.4 Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Display Technology Using a Pulsed Spray Method 239
8.4.5 Summary 242
8.5 Conclusion 243
References 243
Part V Solar Cells 250
9 Solar Cells 251
Symbols 251
9.1 Introduction 252
9.2 Principles of Solar Cells 254
9.2.1 Semiconductor p-n Junction Solar Cells 254
9.2.2 Organic Solar Cells 259
9.2.3 Hybrid Heterojunction Solar Cells 263
9.2.4 Dye-Sensitized Solar Cells 264
9.2.5 Tandem Solar Cells 266
9.3 Progress of Various Types of Solar Cells 268
9.3.1 Crystalline Si Solar Cells 268
9.3.2 Amorphous Si Solar Cells 269
9.3.3 III-V Semiconductor Solar Cells 269
9.3.4 CIGS Thin-Film Solar Cells 270
9.3.5 CdTe Thin-Film Solar Cells 270
9.3.6 Dye-Sensitized Solar Cells 271
9.3.7 Organic Solar Cells 272
References 272
Part VI Liquid Crystal Technology 274
10 Physics of Liquid Crystals 275
10.1 Brief History 275
10.2 LC Phases 276
10.3 Nematic LC 277
10.3.1 Order Parameter 277
10.3.2 Birefringence 278
10.3.3 Dielectric Anisotropy 279
10.3.4 Elastic Continuum Theory of Nematic LCs 280
10.4 Surface Alignment 282
References 282
11 Photo-Alignment Technology 284
11.1 Photo-Isomerization in Azo-Compound-Containing PolymerDye Films 285
11.2 Bulk-Mediated Photo-Isomerization and Adsorption Effects 287
11.3 Photo-Crosslinking in Cinnamic Side-Chain Polymers 291
11.4 Photo-Degradation in Polyimide Films 292
References 293
12 Liquid Crystal Display—Present Status and Emerging Technology 299
12.1 Liquid Crystal Display Modes 299
12.2 Emerging Technology 308
References 315
13 Liquid Crystal 3D Displays 318
13.1 Introduction of 3D Display 318
13.2 LC Lens for 3D Display 319
13.2.1 2D3D Switching Function of LC-Lens 320
13.2.1.1 Polarization Active Micro-Lens 320
13.2.1.2 Active LC Lenticular Lens 321
13.2.1.3 Electric-Field-Driven LC (ELC) Lenticular Lens 322
13.2.2 Rotation Function for Mobile Application 323
13.2.3 3D Scanning LC-Lens for Full Resolution 3D Image 325
13.3 Conclusions and Future Developments 326
References 327
14 Liquid Crystals for Non-display Applications 329
14.1 Liquid Crystal Gratings 329
14.2 Spatial Filters 331
14.3 Polarization Converters 333
14.4 Liquid Crystal Lenses 336
14.5 Liquid Crystal Q-Plates 338
References 340
15 Liquid Crystals for Bio-medical Applications 345
15.1 Biosensors Using Nematic Liquid Crystals 345
15.2 Sperm Testing Devices Using Droplet Manipulation 350
15.3 Sensing for High Density Lipoprotein in Human Serum 353
15.4 Ophthalmic Lenses Using Nematic Liquid Crystals 355
References 360
Part VII Advanced Trends of Nanophotonics 363
16 Diffraction-Unlimited Plasmonic Nanolaser 365
Symbols 365
16.1 Main Text 365
References 367
17 Modeling of Micro and Nanolaser Cavities 368
Symbols 368
17.1 Introduction 369
17.2 Formulation Based on Generalized Eigenvalue Problem 371
17.3 White-Source Spectrum and Spectral Property 372
17.4 Threshold Gain, Confinement Factor, and Modal Volume 374
17.5 Example: Whispering Gallery Modes 377
17.6 Conclusion 381
References 382
18 Nano Structure Light Emitting Devices 384
Symbols 384
References 391
19 Flexible MicroNano-lasers and Compact Optical Curvature Sensors 393
Symbols 393
19.1 Introduction 393
19.2 Flexible Microdisk Cavity Laser 394
19.3 Optical Curvature Sensor with the Microdisk Laser 398
19.4 Tunable Photonic Crystal Laser with on the PDMS Flexible Substrate 401
References 406
20 Driving Lightwave in Nanopatterned Nanowire 408
Symbols 408
20.1 Background: Two-Dimensional Photonic Crystals on Slabs 409
20.2 Minimizing Device Footprint: One-Dimensional Photonic Crystals on Nanowires 410
20.3 Photonic Crystal Nanobeam: Efficient Nanolasers 411
20.4 Photonic Crystal Nanoring 415
20.5 Photonic Crystal Nano-Fishbone: Ultralow Loss TM-Polarized Mode 419
20.6 Summary 423
References 423
21 Slow Light in Nano-structured Waveguides 425
Symbols 425
References 429
22 Obliquely Deposited Negative Index Film 431
Symbols 431
22.1 Introduction 431
22.2 A Nanostructured Thin Film with Negative Index 432
22.3 Interference Observation from a Low Loss Film with Negative Index 433
22.4 Summary 434
References 434
23 Antireflective Nanostructures for Solar Cells 435
Symbols 435
23.1 Thin Film AR 435
23.1.1 Single Layer ARC 436
23.1.2 Multi-layer ARC 437
23.2 Nanostructured ARC 438
23.2.1 Homogeneous Nanostructured ARC 438
23.2.2 Inhomogeneous Nanostructured ARC 438
23.2.3 Combination of Thin Film ARC and Nanostructures 441
23.3 Future of ARC 443
References 444
24 Nanorod LED Arrays 445
Symbol 445
24.1 Fabrication of Nanorod LED 445
24.2 Properties of Nanorod LED 447
References 448
25 Plasmonic Nanoslit Arrays for Sensitive Biosensors 450
Symbols 450
25.1 Introduction 451
25.2 Surface Plasmon Resonance, Excitation and Sensitivity 451
25.3 Surface Plasmon Resonances in Nanostructures 454
25.4 Enhancing Sensitivity of Nanoplasmonic Biosensors 459
25.5 Applications of Nanoplasmonic Biosensors 463
25.6 Conclusions 468
References 469
Part VIII Biophotonics 472
26 Cellular Autofluorescence Detection Through FLIMFRET Microscopy 473
26.1 Introduction 473
26.2 Autofluorescence in Biological Specimen 474
26.3 Multiphoton Excitation 475
26.4 Measurements and Data Analysis 476
26.5 Applications of FLIMFRET and Significance 478
26.6 Conclusion 481
References 482
27 Optical Coherence Tomography for Quantitative Diagnosis in Cardiovascular Disease 485
27.1 Introduction 485
27.2 Overview of Optical Coherence Tomography 486
27.3 Applications of Quantitative OCT 487
27.3.1 Rapid Quantification of Heartbeat Parameters in Drosophila Using Swept Source Optical Coherence Tomography (SS-OCT) 487
27.3.2 PS-OCT Imaging and Quantitative Characterization of Human Atherosclerosis 490
27.4 Summary 493
References 494
28 Introduction to Superresolution Microscopy 497
28.1 Introduction 497
28.2 Fundamentals of Superresolution Microscopy 498
28.2.1 Spectral Separation with Localization 498
28.2.2 Switch OnOff (Temporal Separation) of Fluorescence with Localization 500
28.2.3 Switch OnOff Fluorescence with Spatial Engineering of Beam Focus 503
28.2.4 Saturation of Fluorescence with Temporal Modulation 506
28.2.5 Saturation of Fluorescence with Spatial Modulation 507
28.3 Realization of Superresolution Microscopy Based on Non-fluorescence Contrast 510
28.4 Future Perspective 513
References 514
29 Harmonic Generation Microscopy 518
29.1 Introduction 518
29.1.1 Principle 519
29.1.2 System Setup 520
29.1.3 3D Spatial Resolution 522
29.1.4 Imaging Contrasts of SHG and THG in Bio-tissues 523
29.2 Biomedical Applications of HGM 525
29.2.1 HGM Imaging of Zebrafish Embryo 525
29.2.2 HGM Imaging of Mouse Tissues 527
29.2.3 HGM Imaging of Human Skin 530
29.3 Conclusion 534
References 535
Index 538

Erscheint lt. Verlag 25.11.2014
Reihe/Serie Topics in Applied Physics
Zusatzinfo XXIII, 542 p. 357 illus.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Optik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Biomedical optics • Femtosecond Fiber Lasers • Fiber Laser Technology • fourier optics • GaN based LED • Harmonic microscopy • HHG Microscopy • High-power lasers • Laser Amplifiers • LED Technology • Liquid Crystal Displays • Liquid Crystals for Biomedical Applications • Nanophotonics • Nanoplasmonic Sensing • OFDM Fiber Transmission • Optical coherence tomography • Optical communication • optical interference • Optical Metrology • Photonic devices • Picosecond Laser Seeder • Pulse Generation • Slow Light in Nanostructured Waveguides • Solar cells • Solid State Lighting
ISBN-10 94-017-9392-1 / 9401793921
ISBN-13 978-94-017-9392-6 / 9789401793926
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 33,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Bahaa E. A. Saleh; Malvin Carl Teich

eBook Download (2020)
Wiley-VCH (Verlag)
84,99