Handbook of Crystal Growth -

Handbook of Crystal Growth (eBook)

Bulk Crystal Growth

Peter Rudolph (Herausgeber)

eBook Download: EPUB
2014 | 2. Auflage
1418 Seiten
Elsevier Science (Verlag)
978-0-444-63306-4 (ISBN)
Systemvoraussetzungen
350,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy.Volume 2A - Presents the status and future of Czochralski and float zone growth of dislocation-free silicon - Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades - Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics - Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B - Explores capillarity control of the crystal shape at the growth from the melt - Highlights modeling of heat and mass transport dynamics - Discusses control of convective melt processes by magnetic fields and vibration measures - Includes imperative information on the segregation phenomenon and validation of compositional homogeneity - Examines crystal defect generation mechanisms and their controllability - Illustrates proper automation modes for ensuring constant crystal growth process - Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries
Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy.Volume 2A- Presents the status and future of Czochralski and float zone growth of dislocation-free silicon- Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades- Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics- Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B- Explores capillarity control of the crystal shape at the growth from the melt- Highlights modeling of heat and mass transport dynamics- Discusses control of convective melt processes by magnetic fields and vibration measures- Includes imperative information on the segregation phenomenon and validation of compositional homogeneity- Examines crystal defect generation mechanisms and their controllability- Illustrates proper automation modes for ensuring constant crystal growth process- Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries

List of Contributors


Matthias Bickermann

Leibniz Institute for Crystal Growth, Berlin, Germany

Institute for Chemistry, Technical University Berlin, Berlin, Germany

Michal Bockowski,     Institute of High Pressure Physics Polish Academy of Sciences and TopGaN Ltd., Warsaw, Poland

Martin Bruder,     AIM Infrarot Module GmbH, Heilbronn, Germany

Kullaiah Byrappa,     Center for Materials Science and Technology, University of Mysore, Mysore, Karnataka, India

Shayan M. Byrappa,     Department of Materials Science and Engineering, Stony Brook University, State University of New York at Stony Brook, Stony Brook, NY, USA

Peter Capper,     Selex ES, Southampton, UK

Chuantian Chen,     Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, CAS, Beijing, China

Hanna A. Dąbkowska,     Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada

Antoni B. Dąbkowski,     Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada

Jeffrey J. Derby,     Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA

Thierry Duffar,     SIMaP-EPM, Saint Martin d’Hères, France

Dirk Ehrentraut,     Soraa, Inc., Goleta, CA, USA

Stefan Eichler,     Freiberger Compound Materials, Freiberg, Germany

Jochen Friedrich,     Fraunhofer Institute IISB, Erlangen, Germany

Tsuguo Fukuda,     Fukuda Crystal Lab Co., Ltd, Sendai, Miyagi, Japan

Zbigniew Galazka,     Leibniz Institute for Crystal Growth, Berlin, Germany

Bing Gao,     Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan

Juan Manuel García-Ruiz,     Instituto Andaluz de Ciencias de la Tierra, Laboratorio de Estudios Cristalográficos CSIC-Universidad de Granada, Granada, Spain

Gunter Gerbeth,     Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Martin E. Glicksman,     Mechanical & Aerospace Engineering Department, Florida Institute of Technology, Melbourne, FL, USA

Regina Hermann,     Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany

Chuck Hsu,     Sino-American Silicon Productions Inc., Hsin-chu, Taiwan

Mamoru Imade,     Osaka University, Suita, Osaka, Japan

Hiroyuki Ishibashi,     Hitachi Chemical Co., Ltd., Ibaraki, Japan

Mitsuru Ishii,     Shonan Institute of Technology, Higashiyamato, Tokyo, Japan

Teruo Izumi,     Superconductivity Research Laboratory, International Superconductivity Technology Center, Kawasaki, Kanagawa, JAPAN

Manfred Jurisch,     Freiberger Compound Materials, Freiberg, Germany

Koichi Kakimoto,     Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan

Fumino Kawamura,     National Institute for Materials Science, Tsukuba, Ibaraki, Japan

Takahiro Kawamura,     Mie University, Tsu, Mie, Japan

Alexander F. Khokhryakov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

Helmut Klapper,     Institute of Crystallography, RWTH Aachen University, Aachen, Germany

Krzysztof Kubiak,     The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland

Igor N. Kupriyanov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

Chung-wen Lan,     Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

Anke Lüdge,     Leibniz Institute for Crystal Growth, Berlin, Germany

Mihoko Maruyama,     Osaka University, Suita, Osaka, Japan

Ma Eugenia Mendoza,     Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

Noriyuki Miyazaki

Kyoto University, Kyoto, Japan

Kyushu University, Fukutsu-shi, Fukuoka, Japan

Hans-Joachim Möller

Fraunhofer Technology Center for Semiconductor Materials, Freiberg, Germany

Technical University Bergakademie Freiberg, Institute for Experimental Physics, Freiberg, Germany

Abel Moreno,     Instituto de Química, Universidad Nacional Autónoma de México, Mexico

Yusuke Mori,     Osaka University, Suita, Osaka, Japan

Andris Muiznieks,     Department of Physics, University of Latvia, Riga, Latvia, (Deceased 5 April 2013)

Georg Müller,     Crystal Consulting, Langensendelbach, Germany

J. Brian Mullin,     Electronic Materials Consultancy, Poole, UK

Kazuo Nakajima,     Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan

Namratha Keerthiraj,     Center for Materials Science and Technology, University of Mysore, Mysore, Karnataka, India

Teruhiko Nawata,     Tokuyama Corporation, Yamaguchi, Japan

Michael Neubert,     Leibniz Institute for Crystal Growth, Berlin, Germany

Arkadiusz Onyszko,     The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland

Aleks G. Ostrogorsky

Mechanical & Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA

Research on segregation was partially supported by NASA

Fermín Otálora,     Instituto Andaluz de Ciencias de la Tierra, Laboratorio de Estudios Cristalográficos CSIC-Universidad de Granada, Granada, Spain

Yuri N. Palyanov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

Tania Paskova,     Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA

Janis Priede,     Applied Mathematics Research Center, Coventry University, UK

Igor Pritula,     Institute of Single Crystals, National Academy of Sciences of Ukraine, Kharkov, Ukraine

Victor G. Ralchenko,     Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia

Helge Riemann,     Leibniz Institute for Crystal Growth, Berlin, Germany

Peter Rudolph,     Crystal Technology Consulting, Schönefeld, Germany

Keshra Sangwal,     Department of Applied Physics, Lublin University of Technology, Lublin, Poland

Nobuhiko Sarukura,     Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan

Christiane Schmidt,     Martin-Luther-Universitaet Halle-Wittenberg, Zentrum für Ingenieurwissenschaften, Halle, Germany

Yuh Shiohara,     Superconductivity Research Laboratory, International Superconductivity Technology Center, Kawasaki, Kanagawa, JAPAN

Jan Sieniawski,     The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland

Dariusz Szeliga,     The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland

Joop...

Erscheint lt. Verlag 4.11.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Geowissenschaften Mineralogie / Paläontologie
Technik
ISBN-10 0-444-63306-5 / 0444633065
ISBN-13 978-0-444-63306-4 / 9780444633064
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 68,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99