Handbook of Crystal Growth (eBook)
1418 Seiten
Elsevier Science (Verlag)
978-0-444-63306-4 (ISBN)
Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy.Volume 2A- Presents the status and future of Czochralski and float zone growth of dislocation-free silicon- Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades- Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics- Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B- Explores capillarity control of the crystal shape at the growth from the melt- Highlights modeling of heat and mass transport dynamics- Discusses control of convective melt processes by magnetic fields and vibration measures- Includes imperative information on the segregation phenomenon and validation of compositional homogeneity- Examines crystal defect generation mechanisms and their controllability- Illustrates proper automation modes for ensuring constant crystal growth process- Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries
List of Contributors
Matthias Bickermann
Leibniz Institute for Crystal Growth, Berlin, Germany
Institute for Chemistry, Technical University Berlin, Berlin, Germany
Michal Bockowski, Institute of High Pressure Physics Polish Academy of Sciences and TopGaN Ltd., Warsaw, Poland
Martin Bruder, AIM Infrarot Module GmbH, Heilbronn, Germany
Kullaiah Byrappa, Center for Materials Science and Technology, University of Mysore, Mysore, Karnataka, India
Shayan M. Byrappa, Department of Materials Science and Engineering, Stony Brook University, State University of New York at Stony Brook, Stony Brook, NY, USA
Peter Capper, Selex ES, Southampton, UK
Chuantian Chen, Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, CAS, Beijing, China
Hanna A. Dąbkowska, Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
Antoni B. Dąbkowski, Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
Jeffrey J. Derby, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
Thierry Duffar, SIMaP-EPM, Saint Martin d’Hères, France
Dirk Ehrentraut, Soraa, Inc., Goleta, CA, USA
Stefan Eichler, Freiberger Compound Materials, Freiberg, Germany
Jochen Friedrich, Fraunhofer Institute IISB, Erlangen, Germany
Tsuguo Fukuda, Fukuda Crystal Lab Co., Ltd, Sendai, Miyagi, Japan
Zbigniew Galazka, Leibniz Institute for Crystal Growth, Berlin, Germany
Bing Gao, Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan
Juan Manuel García-Ruiz, Instituto Andaluz de Ciencias de la Tierra, Laboratorio de Estudios Cristalográficos CSIC-Universidad de Granada, Granada, Spain
Gunter Gerbeth, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
Martin E. Glicksman, Mechanical & Aerospace Engineering Department, Florida Institute of Technology, Melbourne, FL, USA
Regina Hermann, Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany
Chuck Hsu, Sino-American Silicon Productions Inc., Hsin-chu, Taiwan
Mamoru Imade, Osaka University, Suita, Osaka, Japan
Hiroyuki Ishibashi, Hitachi Chemical Co., Ltd., Ibaraki, Japan
Mitsuru Ishii, Shonan Institute of Technology, Higashiyamato, Tokyo, Japan
Teruo Izumi, Superconductivity Research Laboratory, International Superconductivity Technology Center, Kawasaki, Kanagawa, JAPAN
Manfred Jurisch, Freiberger Compound Materials, Freiberg, Germany
Koichi Kakimoto, Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan
Fumino Kawamura, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
Takahiro Kawamura, Mie University, Tsu, Mie, Japan
Alexander F. Khokhryakov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
Helmut Klapper, Institute of Crystallography, RWTH Aachen University, Aachen, Germany
Krzysztof Kubiak, The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland
Igor N. Kupriyanov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
Chung-wen Lan, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
Anke Lüdge, Leibniz Institute for Crystal Growth, Berlin, Germany
Mihoko Maruyama, Osaka University, Suita, Osaka, Japan
Ma Eugenia Mendoza, Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Noriyuki Miyazaki
Kyoto University, Kyoto, Japan
Kyushu University, Fukutsu-shi, Fukuoka, Japan
Hans-Joachim Möller
Fraunhofer Technology Center for Semiconductor Materials, Freiberg, Germany
Technical University Bergakademie Freiberg, Institute for Experimental Physics, Freiberg, Germany
Abel Moreno, Instituto de Química, Universidad Nacional Autónoma de México, Mexico
Yusuke Mori, Osaka University, Suita, Osaka, Japan
Andris Muiznieks, Department of Physics, University of Latvia, Riga, Latvia, (Deceased 5 April 2013)
Georg Müller, Crystal Consulting, Langensendelbach, Germany
J. Brian Mullin, Electronic Materials Consultancy, Poole, UK
Kazuo Nakajima, Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
Namratha Keerthiraj, Center for Materials Science and Technology, University of Mysore, Mysore, Karnataka, India
Teruhiko Nawata, Tokuyama Corporation, Yamaguchi, Japan
Michael Neubert, Leibniz Institute for Crystal Growth, Berlin, Germany
Arkadiusz Onyszko, The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland
Aleks G. Ostrogorsky
Mechanical & Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA
Research on segregation was partially supported by NASA
Fermín Otálora, Instituto Andaluz de Ciencias de la Tierra, Laboratorio de Estudios Cristalográficos CSIC-Universidad de Granada, Granada, Spain
Yuri N. Palyanov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
Tania Paskova, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
Janis Priede, Applied Mathematics Research Center, Coventry University, UK
Igor Pritula, Institute of Single Crystals, National Academy of Sciences of Ukraine, Kharkov, Ukraine
Victor G. Ralchenko, Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
Helge Riemann, Leibniz Institute for Crystal Growth, Berlin, Germany
Peter Rudolph, Crystal Technology Consulting, Schönefeld, Germany
Keshra Sangwal, Department of Applied Physics, Lublin University of Technology, Lublin, Poland
Nobuhiko Sarukura, Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
Christiane Schmidt, Martin-Luther-Universitaet Halle-Wittenberg, Zentrum für Ingenieurwissenschaften, Halle, Germany
Yuh Shiohara, Superconductivity Research Laboratory, International Superconductivity Technology Center, Kawasaki, Kanagawa, JAPAN
Jan Sieniawski, The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland
Dariusz Szeliga, The Faculty of Mechanical Engineering and Aeronautics, Department of Materials Science, Rzeszow University of Technology, Rzeszow, Polish, Poland
Joop...
Erscheint lt. Verlag | 4.11.2014 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Naturwissenschaften ► Geowissenschaften ► Mineralogie / Paläontologie | |
Technik | |
ISBN-10 | 0-444-63306-5 / 0444633065 |
ISBN-13 | 978-0-444-63306-4 / 9780444633064 |
Haben Sie eine Frage zum Produkt? |
Größe: 68,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich