Basic Properties of Semiconductors -

Basic Properties of Semiconductors (eBook)

P.T. Landsberg (Herausgeber)

eBook Download: PDF
2016 | 1. Auflage
1219 Seiten
Elsevier Science (Verlag)
978-1-4832-9110-9 (ISBN)
Systemvoraussetzungen
70,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title.

Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form.

The first three chapters discuss various aspects of modern band theory and the next two analyze impurities in semiconductors. Then follow chapters on semiconductor statistics and on surfaces, interfaces and band offsets as they occur in heterojunctions. Chapters 8 to 19 report on newer topics (though a survey of transport properties of carriers is also included). Among these are transport of hot electrons, and thermoelectric effects including here and elsewhere properties of low-dimensional and mesoscopic structures. The electron-hole liquid, the quantum Hall effect, localisation, ballistic transport, coherence in superlattices, current ideas on tunnelling and on quantum confinement and scattering processes are also covered.


Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title.Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form.The first three chapters discuss various aspects of modern band theory and the next two analyze impurities in semiconductors. Then follow chapters on semiconductor statistics and on surfaces, interfaces and band offsets as they occur in heterojunctions. Chapters 8 to 19 report on newer topics (though a survey of transport properties of carriers is also included). Among these are transport of hot electrons, and thermoelectric effects including here and elsewhere properties of low-dimensional and mesoscopic structures. The electron-hole liquid, the quantum Hall effect, localisation, ballistic transport, coherence in superlattices, current ideas on tunnelling and on quantum confinement and scattering processes are also covered.

Front Cover 1
Basic Properties of Semiconductors 4
Copyright Page 5
Table of Contents 12
General Preface to the Revised Edition 6
General Preface to the First Edition 8
Preface to Volume 1 10
Contributors to Volume 1 14
CHAPTER 1. Contemporary Topics in Band Theory 16
1. Introduction 18
2. The two types of band structures 20
3. Band gap discontinuities 37
4. Continuous internal symmetries in the band structure of donor-doped multivalley semiconductors 48
Acknowledgments 58
References 58
CHAPTER 2. Chemical Models of Energy Bands 62
1. Chemical models of energy bands 64
2. Physical properties of semiconductor materials 64
3. Dielectric model of semiconductors 65
4. Departures from molecular orbital theory 66
5. Basic formulae 66
6. Chemical trends in band edges 67
7. Alloys and interfaces 70
8. Summary of chemical trends 72
References 72
CHAPTER 3. Ab initio Pseudopotentials and the Structural Properties of Semiconductors 74
1. Introduction 76
2. Pseudopotential methods 83
3. Application to structure 96
4. Applications to vibrational properties 105
5. Other applications 111
6. Conclusions 121
Acknowledgements 122
References 122
CHAPTER 4. Deep and Shallow Impurities in Semiconductors: Theoretical 128
1. Introduction 130
2. The basic theoretical methods for deep defects 130
3. Shallow states, effective-mass theory (EMT) 135
4. Central-cell correction and shallow-deep instability 140
5. Transition-metal and rare-earth impurities 147
6. The DX center and EL2 159
References 171
CHAPTER 5. Impurities in Semiconductors: Experimental 176
1. General 178
2. Absorption 178
3. Photoconductivity 188
4. Luminescence 192
5. Raman scattering 197
6. Electron paramagnetic resonance 197
7. Electrical measurements 201
8. Summary 206
References 207
CHAPTER 6. Semiconductor Statistics 212
Introduction 215
1. Equilibrium statistics 215
2. Recombination statistics 230
3. Radiative processes 246
4. Other non-radiative processes 254
5. Continuous trap distributions 266
6. Surface and interface effects 273
7. Lattice defects and solubility 282
References 292
CHAPTER 7. Surfaces and Interfaces: Atomic-Scale Structure, Band Bending and Band Offsets 296
1. Introduction 299
2. Semiconductor surfaces 300
3. Adsorbate–semiconductor and metal-semiconductor interfaces 335
4. Semiconductor–semiconductor interfaces 389
5. Synopsis 414
Acknowledgments 415
References 416
CHAPTER 8. Nonlinear Dynamics, Phase Transitions and Chaos in Semiconductors 434
1. Semiconductors as nonlinear dynamic systems far from thermodynamic equilibrium 436
2. Generation-recombination induced nonequilibrium phase transitions 443
3. Oscillatory instabilities and deterministic chaos 446
4. Self-organized spatial structures 454
References 460
CHAPTER 9. Electron–Hole Liquids in Semiconductors 464
1. Introduction 466
2. The electron-hole liquid binding energy 472
3. Condensation of excitons into electron–hole drops 474
4. Electrical conductivity of electron–hole drops 486
5. Phase diagram of electron–hole liquids in germanium 488
6. Multiexciton complexes in semiconductors 490
7. Many electron–hole effects at the semiconductor surface 494
Acknowledgements 498
References 499
CHAPTER 10. Dynamics and Classical Transport of Carriers in Semiconductors 504
1. Introduction 507
2. Classical motion of carriers in external fields 509
3. Quantum effects in energy bands due to external fields 523
4. Classical transport in semiconductors: introduction and elementary model 540
5. The Boltzmann equation 546
6. Electrical conductivity 560
7. Transport in electric and magnetic fields 568
8. Thermal gradients and fields 579
9. Scattering mechanisms 583
References 592
CHAPTER 11. Conjugated Polymer Semiconductors: An Introduction 598
1. Introduction 601
2. Preparation, crystal structure, and morphology 605
3. Bonds and bands 608
4. Ground state of polyacetylene 612
5. Solitons 614
6. Polarons and bipolarons 618
7. Optical properties 619
8. Soliton and polaron mobility 622
9. Photoconductivity 629
10. Conductivity 632
References 638
CHAPTER 12. Electron Tunneling in Semiconductors 642
1. Introduction 644
2. Tunneling in semiconductors 650
3. Diode structures 659
4. Diode conduction 663
5. Resonant tunneling 666
6. Additional topics 670
References 677
Chapter 13. Quantum Confinement and Scattering Processes 680
1. Introduction 682
2. Confinement of electrons 683
3. The confinement of optical phonons 693
4. The electron–phonon interaction 705
5. Other electron scattering processes 717
6. Phonon–scattering 725
Acknowledgements 731
References 731
CHAPTER 14. Classical Transport and Thermoelectric Effects in Low-Dimensional and Mesoscopic Semiconductor Structures 736
1. Introduction 738
2. Thermoelectric coefficients 738
3. Diffusion thermopower 740
4. Phonon-drag thermopower 760
5. Magnetothermopower 777
6. Quantum interference effects in thermopower 797
7. Thermal and electrical transport in microstructures and edge states 811
8. Strong localisation and metal-insulator transitions 823
Acknowledgements 828
References 828
CHAPTER 15. Coherence in III—V Semiconductor Superlattices 832
1. Introduction 834
2. Remarks on superlattice structural properties, materials and types 835
3. Approaches to superlattice band structure 841
4. Superlattice optical properties 848
5. Excitons in superlattices 852
6. Superlattices in strong magnetic fields 855
7. Superlattices in an external electric field: Wannier quantization 858
8. Electro-optical absorption in semiconductor superlattices 863
9. Field-induced quantum boxes 867
10. Diffusion and vertical transport in superlattices 869
11. Concluding remarks 870
Acknowledgements 872
References 873
Chapter 16. From Ballistic Transport to Localization 878
1. Introduction 881
2. System fabrication 883
3. Ballistic transport in two-dimensional systems 890
4. Ballistic transport in nanostructures 895
5. Brief history of localization 947
6. Experiments on localization 949
7. Basic concepts 954
8. One-dimensional localization 958
9. Weak localization and quantum interference 961
10. The scaling approach 964
11. Localization in a magnetic field 968
12. Fluctuations 971
References 974
CHAPTER 17. The Quantum Hall Effect 992
1. Introduction 994
2. Two-dimensional electron gas 994
3. Integral quantum Hall effect 1000
4. Fractional quantum Hall effect 1014
References 1047
CHAPTER 18. Hot-Electron Transport Phenomena 1054
1. Introduction 1056
2. Physical observables 1058
3. Analytical solutions to the Boltzmann equation 1066
4. Numerical ensemble Monte Carlo approaches 1074
5. Femtosecond laser excitation of semiconductors 1085
References 1092
CHAPTER 19. Fundamental Aspects of Quantum Transport Theory 1094
1. Introduction 1097
2. The transport problem 1098
3. Quantum phase-space distributions 1105
4. Quantum ballistic transport 1107
5. Transport in electron waveguides 1114
6. Trajectory representations for single electrons 1130
7. High-field dissipative transport 1135
8. Conclusions 1140
References 1140
Author Index 1144
List of Main Abbreviations 1202
Subject Index 1204

Erscheint lt. Verlag 19.4.2016
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-4832-9110-3 / 1483291103
ISBN-13 978-1-4832-9110-9 / 9781483291109
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 136,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Michael Schulz; Beatrix M. Schulz; Reinhold Walser …

eBook Download (2022)
Wiley-VCH (Verlag)
48,99
Theoretische Physik II

von Michael Schulz; Beatrix M. Schulz; Reinhold Walser …

eBook Download (2022)
Wiley-VCH (Verlag)
48,99