Information Processing Underlying Gaze Control -

Information Processing Underlying Gaze Control (eBook)

eBook Download: PDF
2018 | 1. Auflage
474 Seiten
Elsevier Science (Verlag)
978-1-4831-0240-5 (ISBN)
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Information Processing Underlying Gaze Control covers the proceedings of the Satellite Workshop to the 16th European Neuroscience Association. The book presents materials concerning the computational properties of neuronal circuits underlying gaze control.
The book contains 44 papers, which are organized into seven sections. The first section deals with the morphology and physiology of extraocular motor nuclei. Section II tackles the anatomo-functional organization of the saccadic system, and Section III covers the vestibular and otolithic systems. Section IV discusses the optokinetic and smooth pursuit systems, while Section V talks about other sensory systems involved in the control of oculomotor function. Section VI covers the role of cerebellum in the genesis and control of eye movements, and Section VII tackles the coordination of eye, head, and body movements.
The text will be of great use to researchers who have an interest in gaze control.
Information Processing Underlying Gaze Control covers the proceedings of the Satellite Workshop to the 16th European Neuroscience Association. The book presents materials concerning the computational properties of neuronal circuits underlying gaze control. The book contains 44 papers, which are organized into seven sections. The first section deals with the morphology and physiology of extraocular motor nuclei. Section II tackles the anatomo-functional organization of the saccadic system, and Section III covers the vestibular and otolithic systems. Section IV discusses the optokinetic and smooth pursuit systems, while Section V talks about other sensory systems involved in the control of oculomotor function. Section VI covers the role of cerebellum in the genesis and control of eye movements, and Section VII tackles the coordination of eye, head, and body movements. The text will be of great use to researchers who have an interest in gaze control.

Front Cover 1
Information Processing Underlying Gaze Control 4
Copyright Page 5
Table of Contents 6
Preface 12
SECTION I: MORPHOLOGY AND PHYSIOLOGY OF EXTRAOCULAR MOTOR NUCLEI 14
Chapter 1. The Anatomy of the Vestibulo-Ocular System in Lampreys 16
Labyrinth organs, primary octaval projections and octavomotor nuclei 16
Visual system 18
Oculomotor system 19
Vestibulo-ocular connections 19
Connections between the anterior octavomotor nucleus and the oculomotor nucleus 20
Connections between the intermediate octavomotor nucleus and the oculomotor nucleus 21
Vestibular projections to the trochlear nucleus 22
Projections from the posterior octavomotor nucleus to the abducens nucleus 23
Conclusion 23
Acknowledgements 25
References 25
Chapter 2. Excitatory Amino Acid Receptors and Synaptic Transmission in Rat Extraocular Motoneurons 28
Excitatory amino acid (EAA) actions in abducens motoneurons in vivo 29
AMPA receptor-mediated trigeminal EPSPs and amplification by NMDA 30
NMDA receptors and Instability 30
Hysteresis and plateau potentials in extraocular motoneurons 31
Possible functional significance of bistable behaviour 33
Conclusion 34
Acknowledgements 34
References 34
Chapter 3. Effects of the APV Injection into the Abducens and the Prepositus Hypoglossi Nuclei on the Generation of Eye Position Signal 36
Experimental procedures 37
Microinjections of APV in the abducens nucleus 38
Microinjections of APV in the NPH 40
Discussion and conclusions 42
References 44
Chapter 4. Lateral Rectus Muscle Paralysis Induced by Botulinum Toxin: Effects on Abducens Motoneuron Discharge Characteristics 46
The experimental model: the abducens nucleus of the cat 47
Botulinum-induced eye movement deficits 49
Discharge characteristics of abducens motoneurons following botulinum toxin injection 49
A comparison between botulinum-treated and axotomized motoneurons 52
Conclusion 52
Acknowledgements 53
References 53
Chapter 5.Differential Response of Abducens Internuclear Neurons to Selective Target Removal and Electrolytic Lesion in Adult Cats 56
Lesion procedures 58
Physiological response of abducens internuclear neurons to selective target removal 58
Morphological response of abducens intemuclear neurons to selective target removal 61
The response of abducens intemuclear neurons to electrolytic lesion 61
Conclusion 63
Acknowledgements 65
References 65
SECTION II: ANATOMO-FUNCTIONAL ORGANIZATION OF THE SACCADIC SYSTEM 68
Chapter 6. Compensation for Perturbations of Gaze and Role of Vestibular Signals in Gaze Control 70
Methods 71
Training and protocol 72
Data recording and analysis 72
Results 73
SC stimulation in the canal-plugged cat 76
The feedback control of gaze 78
Comparison with previous studies 78
Role of the vestibular system 79
Acknowledgements 79
References 79
Chapter 7. On the 3-Dimensional Rapid Eye Movement Generator in the Monkey 82
A la recherche du plan perdu 83
Analysis and graphical representation of saccade related firing patterns 83
Results 84
Conclusion 89
Acknowledgements 90
References 90
Chapter 8. Changes of Listing's Plane Under Physiological and Pathological Conditions 92
Co-ordinate systems 92
Primary position 93
False torsion 95
Change of Listing's plane 97
Physiological shift of Listing's plane with static otolith input 97
Pathological shift of Listing's plane as a consequence of riMLF lesions 97
Conclusion 99
Pathological shift of Listing's plane with riMLF lesions 100
Listing's plane and the reduction of degrees of freedom of movement 100
Acknowledgements 102
References 102
Chapter 9. On the Role of Goldfish Optic Tectum in the Generation of Eye Movements 104
Tectal map of eye movement: functional zones 105
Influence of initial eye position on the evoked eye movement 109
Effects of stimulus parameters on evoked eye saccades 109
Discussion 111
Conclusion 111
Acknowledgements 112
References 112
Chapter 10. Collicular Control of Saccades by the Prepositus Feedback Loop 114
Topographical organisation of the preposito-collicular pathway 115
Firing pattern of PH neurones underlying the feedback 118
Consequence of a temporal-to-spatial transformation of the feedback signal: a simple simulation of the moving hill hypothesis 121
Conclusion 124
References 124
Chapter 11. Saccadic Reaction Times to Fully Predictive and Random Visual Targets during Gap and Non-Gap Paradigms 126
Material and methods 127
Subjects and procedures 127
Experimental conditions 127
Analysis 128
Results 129
Discussion 130
Conclusions 131
Acknowledgements 131
References 132
Chapter 12. Positron Emission Tomographie Studies of Saccadic Eye Movements in Healthy Humans 134
Material and methods 134
Protocol 1 135
Protocol 2 135
Protocol 3 135
NrCBF analysis 136
Results 136
Discussion 136
Acknowledgements 137
References 139
Chapter 13. A Neural Computation: Spatial to Temporal Transformation 142
T^pes of brainstem neurons 143
There are two main types of brainstem neurons that concern us here: Burst neurons 143
Omnipause neurons (OPN) 143
A model incorporating the moving hill — outline 144
Neuronal model 146
Parameter values 147
Results 147
Conclusion 151
Future directions 151
References 152
Chapter 14. Nonlinearities in the Saccadic System and Efferent Feedback to the Collicular Motor Map 156
Dynamic properties of saccadic eye movements 156
Model for dynamic feedback to the collicular motor map 157
Evidence for eye position modulation of SC discharges 159
General methods 160
Description ofSC movement fields 160
Results 161
Conclusion 165
Acknowledgements 165
References 165
SECTION III: VESTIBULAR AND OTOLITHIC SYSTEMS 168
Chapter 15.Neuroactive Amino Acids in Vestibular Afferents 170
Differences between vestibular afferents 170
Putative transmitters of vestibular afferents 174
Conclusion 175
Acknowledgement 175
References 175
Chapter 16. Pharmacological Properties of Medial Vestibular Neurones in the Guinea-Pig: An In Vitro Study 178
Material and methods 179
Effects of excitatory and inhibitory amino acids 180
Presynaptic and postsynaptic effects of dopaminergic agonists 183
Other monoaminergic effects: actions of serotonin and noradrenaline 185
Pharmacological distinctions between type A and type B medial vestibular neurones: effects of the chohnergic agonists and of sustance P 188
Conclusions 190
Acknowledgements 190
References 190
Chapter 17. Type I Second-Order Medial Vestibular Neurons in the Head-Fixed Guinea-Pig During Alertness and Following Adaptation 194
Surgical procedures 196
Recording conditions 196
Response of identified type I second-order vestibular neurons to sinusoidal head rotation 197
Discharge during the HVOR 197
Discharge during the quick phases 197
Regularity versus irregularity of discharge 199
Eye position sensitivity 200
Discharge of the second-order MVNn during quick phases 200
Adaptive change in the response of identified second-order vestibular neurons 201
HVOR gain and neuronal velocity sensitivity after adaptation 201
Conclusions 203
Acknowledgements 203
References 203
Chapter 18. Input Patterns from Six Semicircular Canals to Neck Motoneurons of the Multifidus and the Semispinalis Muscle Groups 206
Patterns of postsynaptic potentials evoked by stimulation of six ampullary nerves 208
Rectus capitis dorsalis motoneurons 208
Complexus motoneurons 209
Biventer motoneurons 209
Obliquus capitis caudalis motoneurons 210
Cervical multifidus motoneurons 210
Evaluation of stimulus spread within the labyrinth 210
Pathways from six semicircular canals to neck motoneurons 211
Discussion 212
References 214
Chapter 19. Inhibitory Vertical Canal Inputs Mediated by Spinal Commissural Neurons to Contralateral Neck Motoneurons 216
Intracellular recording from neck motoneurons 217
Intraaxonal recording and staining of commissural neurons (CNs) in the spinal cord receiving vestibular input 217
Properties of postsynaptic potentials elicited by vestibular nerve stimulation 218
Pattern of postsynaptic potentials evoked from individual ampullary nerves in OCA motoneurons 218
Spinal commissural neurons mediating vestibular input to contralateral neck motoneurons 220
Effect of stimulation of lamina VIII on contralateral neck motoneurons 220
Discussion 222
Summary and conclusions 224
References 225
Chapter 20. Vestibular and Spinal Plasticity After Hemilabyrinthectomy in the Frog 228
Changes in the vestibular nuclear complex 229
Changes in the brachial spinal cord 230
Conclusion 234
Acknowledgements 234
References 234
Chapter 21. Does Unilateral Vestibular Deafferentation Affect Listing's Plane? 236
Material and methods 236
Results 237
Discussion and conclusion 238
Acknowledgements 239
References 239
Chapter 22. The Vestibulo-Ocular Reflex and Optical Flow 240
Eye velocity responses during active head rotation 240
Averaged responses 243
Optical flow depends on eye position 244
Functional advantage 247
Translational VOR 247
Conclusion 248
Acknowledgements 248
References 248
SECTION IV: OPTOKINETIC AND SMOOTH PURSUIT SYSTEMS 250
Chapter 23. Segregation of Retinal and Visual Cortex Projections to the Pretectum, 
252 
Optokinetic circuits 253
Anterograde tracing 253
Injection sites 254
Conclusion 254
Acknowledgements 256
References 256
Chapter 24. A Cortico-Ponto-Cerebellar Pathway for Smooth-Pursuit Eye Movements 258
The role of cortical areas MT and MST1 258
The dorsolateral pontine nucleus as a link between cortical and cerebellar structures involved in smooth pursuit 262
VT-neurons in the cerebellar vermis 263
Afferents to the "oculomotor" vermis 265
Oculomotor disturbances following a lesion of the posterior vermis in man 267
Conclusions 267
Acknowledgements 269
References 269
Chapter 25. Stimulus Specificity in the Primate Optokinetic System 272
Separate vestibular and visual mechanisms for dealing with rotational and translational disturbances of gaze? 272
Evidence for separate visual backups to the RVOR and the TVOR 273
OKNd: Selectively compensates for rotational optic flow? 274
OKNd: selectively insensitive to translational optic flow? 276
OKNe: selectively compensates for translational optic flow? 277
The smooth pursuit system and local optic flow 277
Summary and conclusions 278
References 279
Chapter 26. When the Two Eyes See Patterns of Unequal Size They Produce Saccades of Unequal Amplitude 282
Methods 283
Results 283
Small aniseikonia (10%) 284
Large aniseikonia (> 20%)
Discussion 286
Summary and conclusions 287
Acknowledgments 287
References 287
Chapter 27. Similar Changes in the Latency of Pursuit and Saccadic Eye 
290 
Applying the gap paradigm to pursuit eye movements 291
Effects on the latency of saccades 294
Effects on the latency of pursuit 295
Comparison of the effects on saccades and pursuit 295
Conclusions 296
References 298
Chapter 28. A Model of Predictive Processes in Oculomotor Control Based on Experimental Results in Humans 300
Experimental evidence for prediction in ocular pursuit and VOR suppression 301
Volitional control vs reflex behaviour 303
Development of the mathematical model 304
Stability of the model 307
Specific details of model components 307
Simulation of responses to sinusoidal target motion stimuli 308
Frequency characteristics of the model 309
Conclusion 310
References 310
SECTION V: OTHER SENSORY SYSTEMS INVOLVED IN THE 
312 
Chapter 29. Anatomical Arguments for a Functional Participation of the 
314 
Material and methods 315
Results 317
Discussion 317
Conclusion 320
References 321
Chapter 30. Are Extraocular Afferent Signals Involved in Eye-Head Coupling Processes? 322
Short-term changes occurring after bilateral tenectomy of the horizontal recti muscles 323
Long-term changes occurring after bilateral tenectomy of the horizontal recti muscles 326
Conclusion 328
Acknowledgements 330
References 330
Chapter 31. Extraocular Muscle Afferent Signals and the Vestibulo-Ocular Reflex 332
Preparation and techniques 333
Effect of EOM afferent signals on single units 333
Effect on VOR 337
Control experiments 340
Conclusion 340
Acknowledgements 341
References 341
Chapter 32. Conjugate and Disconjugate Contributions to Bifoveal Fixations Studied from a 3D Perspective 342
Eye movement recordings 343
Formal description of binocular eye positions in 3D 344
Far-near refixations 346
Functional implications 348
Conclusion 349
Acknowledgements 349
References 349
Chapter 33. 

352 
Auditory localization 353
Objective 354
Methods 354
Spectral influence on oculomotor responses 355
Dynamics of auditory evoked saccades 357
Effects of eye position on auditory orienting 358
Conclusion 360
Acknowledgements 361
References 361
Section VI: Role of Cerebellum in the 
364 
Chapter 34. 
366 
Evaluating the basic connections underlying the VOR 366
Increasing the detail, a first differentiation of the connections 368
Cerebello-vestibular projection 370
Climbing fiber zonation 370
Precerebellar nuclei 371
Increasing the detail, vestibular and cerebellar interconnections 372
Corticovestibular projection 373
Vestibulocerebellar mossy fiber projection 373
Commissural (and intrinsic) vestibular projections 374
Conclusion 374
References 374
Chapter 35. 
376 
Acetylcholinesterase histochemistry 377
Choline acetyltransferase immunohistochemistry 378
Muscarinic receptor autoradiography 380
Cholinergic receptor protein immunohistohemistry 380
Discussion 383
Conclusion 386
Acknowledgements 386
References 386
Chapter 36. 
388 
Methods 389
Floccular input from the NPH: general features 391
Floccular input from the MVN: general features 392
Floccular inputs from the NPH-MVN : "phase" features 392
Conclusion 395
Acknowledgements 395
References 395
Chapter 37. Discharge Patterns of Cerebellar Nuclear Neurons Related to Eye and Head Movements in the Alert Cat 398
Experimental procedures 399
Recording of neuronal activity 399
Other recording and stimulating procedures 400
Data collection and analysis 400
Histological analysis 400
Different types of nuclear neurons related to eye movement parameters 400
Firing properties of type I-Epv neurons 401
Firing properties of type II neurons 401
Firing properties of saccade-related neurons 402
A possible role of type I-Epv neurons in oculomotor function 404
A possible role for type II neurons in the control of posture 405
A possible role for saccade-related neurons 405
Acknowledgements 406
References 406
Chapter 38. 

408 
Experimental procedures 409
Recording sessions 410
Field potentials recorded in deep cerebellar nuclei 410
Variability of climbing fiber effects on deep cerebellar nuclei neurons 412
Interactions between mossy and climbing fiber effects on nuclear neurons 412
Conclusion 415
Acknowledgements 416
References 416
Chapter 39. 

418 
Anatomical considerations 419
Single unit studies 420
Oculomotor vermis 420
Fastigial oculomotor region (FOR) 420
Lesion studies 422
Saccades 422
Smooth pursuit 423
Conclusions 424
Acknowledgements 425
References 425
Chapter 40. Vestibulo-Ocular Control by the Cerebellar Nodulo-Uvular Lobules 428
Anatomical studies 429
Electrical Stimulation studies 429
Single unit studies 430
Lesion studies 431
Experimental procedures 431
Postural syndromes 432
Oculomotor deficits 432
Vestibulo-ocular deficits 435
Concluding remarks about nodulo-uvular function 436
References 437
Section VII: 
440 
Chapter 41. 

442 
Biomechanics 443
Movement strategies 444
The atlanto-occipital articulation 447
Evolution of the head-neck system 448
Functional compartmentalization 449
Head movement control and intrinsic coordinate systems 449
Conclusions 450
Acknowledgements 452
References 452
Chapter 42. 

456 
Eye-head coordination in turtles and rats 457
Simultaneous stabilization and orientation 459
Conclusion 462
Acknowledgement 463
References 463
Chapter 43. 

464 
Coordinate transformation: temporal and spatial coding 464
Coordinate transformation: auditory and visual systems 465
The models of Groh and Sparks 466
Vector subtraction model 466
Dendrite model 468
An alternative model 468
Conclusions 470
Acknowledgements 472
References 472
Chapter 44. Coding Spatial Information Through Retinal and Labyrinthine Signals 474
Experiment I: Comparing a body rotation magnitude in relation with a flashed target eccentricity 475
Results 476
Experiment II. Perception of retinal and vestibular stimulations 476
Materials and methods 477
Results 478
Discussion 478
General discussion and conclusion 479
Acknowledgement 481
References 481
Author Index 482
Subject Index 484

Erscheint lt. Verlag 19.4.2018
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
Technik Bauwesen
ISBN-10 1-4831-0240-8 / 1483102408
ISBN-13 978-1-4831-0240-5 / 9781483102405
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 66,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich