Perspectives in Hydrogen in Metals -

Perspectives in Hydrogen in Metals (eBook)

Collected Papers on the Effect of Hydrogen on the Properties of Metals and Alloys

M. F. Ashby, J. P. Hirth (Herausgeber)

eBook Download: PDF
2017 | 1. Auflage
772 Seiten
Elsevier Science (Verlag)
978-1-4831-9108-9 (ISBN)
Systemvoraussetzungen
70,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Perspectives in Hydrogen in Metals: Collected Papers on the Effect of Hydrogen on the Properties of Metals and Alloys discusses the advancement in the understanding of the effects of hydrogen on the physical and mechanical properties of metals and alloys. The title first covers solubility and other thermodynamic properties, and then proceeds to tackling diffusivity. Next, the selection discusses the trapping of hydrogen by defects and hydride formation. The text also talks about hydrogen in amorphous metals, along with the effect of hydrogen on plastic deformation. The last chapter covers hydrogen embrittlement. The book will be of great use chemists, metallurgists, and materials engineers.
Perspectives in Hydrogen in Metals: Collected Papers on the Effect of Hydrogen on the Properties of Metals and Alloys discusses the advancement in the understanding of the effects of hydrogen on the physical and mechanical properties of metals and alloys. The title first covers solubility and other thermodynamic properties, and then proceeds to tackling diffusivity. Next, the selection discusses the trapping of hydrogen by defects and hydride formation. The text also talks about hydrogen in amorphous metals, along with the effect of hydrogen on plastic deformation. The last chapter covers hydrogen embrittlement. The book will be of great use chemists, metallurgists, and materials engineers.

Front Cover 1
Perspectives in Hydrogen in Metals: Collected Papers on the Effect of Hydrogen on the Properties of Metals and Alloys 4
Copyright Page 5
Table of Contents 8
FOREWORD 6
PART 1: SOLUBILITY AND OTHER THERMODYNAMIC PROPERTIES 16
CHAPTER 1. SOLID SOLUTIONS OF Pd CONTAINING HYDROGEN AND A NOBLE METAL SUBSTITUTIONAL COMPONENT—I. THERMODYNAMIC BEHAVIOR 18
INTRODUCTION 18
EXPERIMENTAL PROCEDURE 18
DISCUSSION 20
CONCLUSIONS 22
REFERENCES 23
CHAPTER 2. SOLID SOLUTIONS OF Pd CONTAINING HYDROGEN AND A NOBLE METAL SUBSTITUTIONAL COMPONENT—II. KINETIC BEHAVIOR 24
INTRODUCTION 24
EXPERIMENTAL PROCEDURE 24
ELECTROCHEMICAL CELL 25
EVALUATION METHODS 25
EXPERIMENTAL RESULTS 26
DISCUSSION 26
CONCLUSIONS 28
REFERENCES 28
CHAPTER 3. CELL MODELS FOR INTERSTITIAL SOLID SOLUTIONS 30
INTRODUCTION 30
CALCULATION OF THERMODYNAMIC FUNCTIONS 31
DISCUSSION 33
REFERENCES 35
CHAPTER 4. THERMODYNAMICS OF Pd–Cu–H SOLID SOLUTIONS 36
1. INTRODUCTION 36
2. EXPERIMENTAL 37
3. EXPERIMENTAL RESULTS 38
4. THERMODYNAMIC MODEL 40
5. DISCUSSION OF RESULTS 42
REFERENCES 42
CHAPTER 5. OVERVIEW NO. 27: THE SOLUBILITY AND DIFFUSIVITY OF HYDROGEN IN WELL-ANNEALED AND DEFORMED IRON 44
1. INTRODUCTION 45
2. HYDROGEN SOLUBILITY IN WELL-ANNEALED IRON 46
3. EFFECT OF MECHANICAL DEFORMATION ON THE SOLUBILITY OF HYDROGENIN B.C.C. IRON 49
4. CONCLUSIONS (SOLUBILITY) 51
5. KINETICS OF THE HYDROGEN-IRON SYSTEM 51
6. H-DIFFUSIVITY IN WELL-ANNEALED IRON 52
7. HYDROGEN DIFFUSIVITY IN DEFORMED IRON 61
8. CONCLUSIONS (DIFFUSIVITY) 65
REFERENCES 65
CHAPTER 6. THERMODYNAMICS OF HYDROGEN IN IRON 68
References 70
Acknowledgement 70
CHAPTER 7. THERMODYNAMICS OF THE HYDROGEN–NICKEL SYSTEM 72
1. INTRODUCTION 72
2. EXPERIMENTAL 73
3. DISCUSSION 73
4. CONCLUSIONS 77
REFERENCES 77
CHAPTER 8. THERMODYNAMIC FUNCTIONS IN DILUTE Pd-H SOLID SOLUTIONS 80
Acknowledgment 82
References 83
CHAPTER 9. THE THERMODYNAMICS OF Pd–Ag–H TERNARY SOLID SOLUTIONS 84
1. INTRODUCTION 84
2. EXPERIMENTS 85
3. THE EXPERIMENTAL ELASTIC DATA 85
4. THE EXPERIMENTAL SOLUBILITY DATA AND ITS PROCESSING 86
5. DISCUSSION OF RESULTS 87
GENERAL DISCUSSION 90
REFERENCES 91
CHAPTER 10. THE THERMODYNAMICS OF TERNARY PALLADIUM-BASED SOLID SOLUTIONS CONTAINING NICKEL AND HYDROGEN 92
INTRODUCTION 92
EXPERIMENTAL 93
REFERENCES 98
CHAPTER 11. STRAIN FIELDS OF HYDROGEN ATOMS IN IRON 100
Introduction 100
Results and Discussion 100
Acknowledgement 104
References 104
CHAPTER 12. STRAIN FIELD OF HYDROGEN IN°i-Fe UNDER BOLTZMANN DISTRIBUTION 106
Introduction 106
Results and Discussions 107
References 109
CHAPTER 13. HYDROGEN ADSORPTION AT CRACKS IN Fe, Nb AND Pd 110
Introduction 110
Hydrogen Distribution in the Vicinity of a Crack 110
Results 111
Conclusions 112
References 112
CHAPTER 14. HYDROGEN IN DEFORMED AND AMORPHOUS Pd80S120 COMPARED TO HYDROGEN IN DEFORMED. AND CRYSTALLINE PALLADIUM 114
Introduction 114
Experimental and Results 114
Discussion 115
References 115
CHAPTER 15. THERMODYNAMICS OF THE SOLID SOLUTION OF HYDROGEN IN ß-TITANIUM ALLOYS: ß-Ti/Mo AND ß-Ti/Re 118
INTRODUCTION 118
EXPERIMENTAL 119
RESULTS 120
DISCUSSION 122
CONCLUSIONS 125
REFERENCES 126
CHAPTER 16. SOLVUS THERMODYNAMICS OF METAL–HYDROGEN INTERSTITIAL SOLUTIONS 128
INTRODUCTION 128
DEFINITION OF THE SOLVUS THERMODYNAMIC PROPERTIES 128
RELATION OF SOLVUS PROPERTIES TO REACTION THERMODYNAMIC PROPERTIES 129
RELATION OF SOLVUS PROPERTIES TO SINGLE PHASE AND TWO-PHASE THERMODYNAMIC PROPERTIES 130
SOLVUS EQUATIONS FOR SIMPLE MODELS 131
EFFECT OF STRESS ON THE SOLVUS 132
EFFECT OF ALLOYING ON THE SOLVUS 133
THE EFFECT OF TRAPPING SITES ON THE SOLVUS 133
THE ROLE OF HYSTERESIS ON SOLVUS THERMODYNAMIC PROPERTIES 134
SUMMARY 134
REFERENCES 135
CHAPTER 17. THE SOLVUS BEHAVIOR OF THE TANTALUM–HYDROGEN (DEUTERIUM) SYSTEM 136
INTRODUCTION 136
EXPERIMENTAL 137
RESULTS AND DISCUSSION 137
REFERENCES 140
CHAPTER 18. SOLVUS BEHAVIOR OF THE VANADIUM-HYDROGEN AND DEUTERIUM SYSTEMS 142
INTRODUCTION 142
EXPERIMENTAL 143
RESULTS AND DISCUSSION 143
REFERENCES 148
CHAPTER 19. THE TERMINAL SOLUBILITY OF HYDROGEN IN NIOBIUM–TANTALUM ALLOYS 150
INTRODUCTION 150
THEORY OF THE CALCULATION OF THE PHASE DIAGRAMS 151
APPLICATION TO THE Nb-Ta-H SYSTEM 152
DISCUSSION 154
REFERENCES 154
CHAPTER 20. LATTICE DILATION OF IRON BY DISSOLVED DEUTERIUM 156
Introduction 156
Experimental 156
Results and Discussion 156
Conclusion 158
References 158
CHAPTER 21. A WORK FUNCTION-CHEMISORPTION STUDY OF HYDROGEN ON IRON: KINETICS AND STRAIN EFFECTS 160
INTRODUCTION 160
1. EXPERIMENTAL 163
2. RESULTS 165
3. DISCUSSION 167
CONCLUSIONS 176
REFERENCES 177
CHAPTER 22. A MODEL CALCULATION OF THE NELSON CURVES FOR HYDROGEN ATTACK 178
INTRODUCTION 178
DESCRIPTION OF MODEL 179
RESULTS AND DISCUSSION 181
CONCLUSIONS 185
REFERENCES 186
CHAPTER 23. ELASTIC AND PLASTIC ACCOMMODATION EFFECTS ON METAL-HYDRIDE SOLUBILITY 188
INTRODUCTION 188
REFERENCES 196
APPENDIX A 197
APPENDIX B 198
CHAPTER 24. DILATION OF h.c.p. ZIRCONIUM BY INTERSTITIAL DEUTERIUM 200
INTRODUCTION 200
METHOD 201
RESULTS 202
DISCUSSION 203
CONCLUSIONS 204
REFERENCES 204
PART 2: DIFFUSIVITY 206
CHAPTER 25. OVERVIEW NO. 29 A GENERAL MATHEMATICAL DESCRIPTION OF HYDROGEN DIFFUSION IN STEELS—I. DERIVATION OF DIFFUSION EQUATIONS FROM BOLTZMANN-TYPE TRANSPORT EQUATIONS 208
1. INTRODUCTION 208
2. DERIVATION OF GENERAL DIFFUSION EQUATIONS 209
3. "PHYSICAL" TRAPS 211
4. REDUCTION TO OTHER MODELS 212
5. FORM OF TEMPERATURE AND STRESS DEPENDENCES 213
6. NON LINEARITIES 214
7. DIFFUSION OBSTACLES 216
8. ATTRACTIVE TRAPS 216
9. CONCLUSION 217
REFERENCES 217
APPENDIX 217
CHAPTER 26. OVERVIEW NO. 29 A GENERAL MATHEMATICAL DESCRIPTION OF HYDROGEN DIFFUSION IN STEELS—II. NUMERICAL STUDY OF PERMEATION AND DETERMINATION OF TRAPPING PARAMETERS 220
1. INTRODUCTION 220
2. PERMEATION WITH ONE TYPE OF TRAPS (TWO TYPES OF SITES) LINEAR CASE
3. PERMEATION WITH TWO TYPES OF TRAPS (THREE TYPES OF SITES) LINEAR CASE 222
4. NON-LINEAR CASES 223
5. CLASSIFICATION OF ANOMALOUS PERMEATION BEHAVIOURS 
224 
6. A "PRACTICAL" DIFFUSION MODEL 225
7. PARAMETER DETERMINATION 225
8. CONCLUSION 226
REFERENCES 227
CHAPTER 27. THE DIFFUSIVITY OF HYDROGEN IN PALLADIUM-BASED SOLID SOLUTIONS 228
INTRODUCTION 228
EXPERIMENTAL RESULTS 229
EXPERIMENTAL 229
DIFFUSION MODEL 230
DISCUSSION OF RESULTS 232
REFERENCES 234
CHAPTER 28. THE DIFFUSIVITY OF HYDROGEN IN NICKEL AT LOW TEMPERATURES 236
Acknowledgement 237
References 237
CHAPTER 29. DIFFUSION OF LIGHT INTERSTITIALS THROUGH NONUNIFORMLY DISTRIBUTED TRAPS 240
INTRODUCTION 240
TIME LAG ANALYSIS 241
SATURABLE TRAPS (9) 241
NONSATURABLE TRAPS (VOIDS) 244
NONUNIFORM TRAP DISTRIBUTION AND MULTIPLE LAMINATE 245
TRANSIENT ANALYSIS 246
CONCLUSIONS 248
REFERENCES 248
CHAPTER 30. LOW FREQUENCY INTERNAL FRICTION STUDY OF V–H, Nb–H AND T–H ALLOYS—I 250
1. INTRODUCTION 250
2. EXPERIMENTAL 250
3. RESULTS 251
4. DISCUSSION 255
5. CONCLUSIONS AND SUMMARY 256
REFERENCES 257
CHAPTER 31. LOW FREQUENCY INTERNAL FRICTION STUDY OF V–H, Nb–H AND Ta–H ALLOYS—II 258
1. INTRODUCTION 258
2. RESULTS 258
3. MECHANISM OF THE PRECIPITATION PEAK 260
4. CONCLUSIONS AND SUMMARY 262
REFERENCES 262
CHAPTER 32. A DEMONSTRATION OF DISLOCATION TRANSPORT OF HYDROGEN IN IRON 264
Introduction 264
Experimental 265
Results and Discussion 265
Conclusion 268
Acknowledgements 268
References 268
CHAPTER 32. HYDROGEN DIFFUSIVITY IN HIGH PURITY ALPHA IRON 270
INTRODUCTION 270
EXPERIMENTAL 271
RESULTS AND DISCUSSION 272
ACKNOWLEDGEMENT 273
REFERENCES 273
CHAPTER 33. DIFFUSION OF HYDROGEN IN BCC METALS 274
Introduction 274
Modelling and Formulation 274
Comparison with Experiment 276
Conclusion 276
References 276
CHAPTER 34. EFFECT OF JOULE HEATING IN ELECTROCHEMICAL MEASUREMENT OF HYDROGEN TRANSPORT 278
Introduction 278
Experimental 278
Results and Discussion 279
Conclusion 280
Acknowledgements 280
References 281
PART 3: STRESS-INDUCED DIFFUSION AND INTERNAL FRICTION 284
CHAPTER 35. ON THE PHYSICAL MODELS OF THE COLD-WORK (SNOEK-KÖSTER) INTERNAL-FRICTION PEAKS IN BCC METALS 286
Introduction: Origin of the Name "Cold-Work Peak" 286
How the Dislocation Concept was Introduced 287
A Variety of "Cold-Work Peaks" 289
The Kink Picture as a Physical Basis of Physical Models of Cold-Work Peaks 289
Discussions 290
References 291
CHAPTER 36. THE COLD WORK PEAK 294
1. Introduction 294
2. The model 295
3. Alternative models 298
References 300
CHAPTER 37. THE KINK-PAIR-FORMATION THEORY OF THE SNOEK-KÖSTER RELAXATION 302
References 308
CHAPTER 38. CORE DIFFUSION, UNPINNING AND THE SNOEK-KÖSTER RELAXATION 310
Theoretical Models 310
Snoek-Köster Peaks in the hep Metals 312
Conclusions 314
References 314
CHAPTER 39. DEFORMATION TEMPERATURE, ORIENTATION AND HYDROGEN EFFECTS ON THE LOW TEMPERATURE INTERNAL FRICTION PEAKS IN VANADIUM SINGLE CRYSTALS 316
Introduction 316
Experimental Procedures 316
Results and Discussion 316
References 318
CHAPTER 40. HYDROGEN RELATED INTERNAL FRICTION PEAKS IN AMORPHOUS AND CRYSTALLIZED Pd–Cu–Si ALLOYS 322
1. INTRODUCTION 322
2. EXPERIMENTAL 322
3. RESULTS 323
4. DISCUSSION 327
5. CONCLUSIONS AND SUMMARY 330
REFERENCES 331
CHAPTER 41. SURFACE ULTRASONIC STUDIES OF TIME-DEPENDENT DISLOCATION PINNING BY H ATOMS IN F.C.C. STAINLESS ALLOYS 332
1. INTRODUCTION 332
2. EXPERIMENTAL 333
3. RESULTS AND DISCUSSION 333
4. CONCLUSIONS 336
REFERENCES 337
CHAPTER 42. GORSKY EFFECT MEASUREMENTS ON AMORPHOUS PdeoSi2oHx BETWEEN 290 AND 490 K 338
Introduction 338
Experimental 339
Results 339
Discussion 341
Conclusion 343
Acknowledgement 343
References 343
CHAPTER 43. EFFECT OF HYDROGEN CHARGING CONDITIONS ON INTERNAL FRICTION OF AUSTENITIC STAINLESS STEEL 344
Introduction 344
Experimental Procedure 345
Results and Discussion 345
Conclusions 346
Acknowledgments 346
References 346
CHAPTER 44. A HYDROGEN PEAK OF INTERNAL FRICTION AND ITS ISOTOPE EFFECT 
348 
Introduction 348
Experimental Procedure 348
Results and Discussion 349
Conclusion 350
References 351
CHAPTER 45. AN INTERNAL FRICTION PEAK CAUSED BY HYDROGEN IN FCC IRON-NICKEL ALLOYS 352
Introduction 352
Experimental Procedure 352
Experimental Results 354
Discussion 354
References 355
CHAPTER 46. THE EFFECT OF HYDROGEN SOLUBILITY ON THE INTERNAL FRICTION OF V-Ti ALLOYS 356
Acknowledgments 357
References 357
CHAPTER 47. HYDROGEN-RELATED INTERNAL FRICTION PEAK IN THE A15 COMPOUND Nb3Sn 358
Introduction 358
Remarks on A15 Compounds 359
Procedure and Results 360
Discussion 361
References 363
CHAPTER 48. THE HYDROGEN-INDUCED COLD WORK PEAK OF INTERNAL FRICTION IN Fe-Cr ALLOYS 364
Introduction 364
Experimental Procedure 364
Results and Discussion 366
References 367
PART 4: TRAPPING OF HYDROGEN BY DEFECTS 368
CHAPTER 49. INTERACTION OF HYDROGEN WITH DISLOCATIONS IN PALLADIUM—I. ACTIVITY AND DIFFUSIVITY AND THEIR PHENOMENOLOGICAL INTERPRETATION 370
INTRODUCTION 370
EXPERIMENTAL 371
RESULTS 373
DISCUSSION 376
REFERENCES 377
CHAPTER 50. INTERACTION OF HYDROGEN WITH DISLOCATIONS IN PALLADIUM—II. INTERPRETATION OF ACTIVITY RESULTS BY A FERMI-DIRAC DISTRIBUTION 380
INTRODUCTION 380
CONCLUSIONS 387
REFERENCES 387
CHAPTER 51. MORE EVIDENCE FOR THE FORMATION OF A DENSE COTTRELL CLOUD OF HYDROGEN (HYDRIDE) AT DISLOCATIONS IN NIOBIUM AND PALLADIUM 390
Introduction 390
Experimental 390
Results 391
Discussion 392
Acknowledgement 395
References 395
CHAPTER 52. TRAPPING OF HYDROGEN BY SUBSTITUTIONAL AND INTERSTITIAL IMPURITIES IN a-IRON 396
INTRODUCTION 396
CALCULATION OF THE HYDROGEN-IMPURITY BINDING ENERGY 397
TRAPPING BY SUBSTITUTIONAL IMPURITIES 398
TRAPPING BY INTERSTITIAL IMPURITIES 400
ACKNOWLEDGEMENT 400
REFERENCES 400
CHAPTER 53. TRAPPING OF HYDROGEN BY OXYGEN AND NITROGEN IMPURITIES IN NIOBIUM, VANADIUM AND TANTALUM 402
1. INTRODUCTION AND SUMMARY 402
2. CALCULATION OF THE HYDROGEN-IMPURITY BINDING ENERGY USING LATTICE STATICS THEORY 403
3. RELATIVE LOCATION OF HYDROGEN AND IMPURITY ATOMS 405
4. DEFECT STRUCTURES AND STRESS RELAXATION: TRANSITION PATHS, ACTIVATION ENERGIES AND BINDING ENERGIES 406
REFERENCES 409
CHAPTER 54. TRAPPING OF HYDROGEN BY METALLIC SUBSTITUTIONAL IMPURITIES IN NIOBIUM, VANADIUM, AND TANTALUM 410
1. INTRODUCTION AND SUMMARY 410
2. CALCULATION OF THE HYDROGEN-IMPURITY BINDING ENERGY 412
3. RELATIONSHIP BETWEEN HYDROGEN SOLUBILITY AND TRAPPING 415
REFERENCES 417
CHAPTER 55. A MORE GENERALIZED ANALYSIS OF HYDROGEN TRAPPING 418
1. INTRODUCTION 418
2. ANALYSIS OF HYDROGEN DIFFUSION IN A SYSTEM WITH TRAPS OF ONE KIND 419
3. DIFFUSION OF HYDROGEN IN A SYSTEM WITH IRREVERSIBLE TRAPS 421
4. DIFFUSION OF HYDROGEN IN A SYSTEM WITH REVERSIBLE AND IRREVERSIBLE TRAPS 421
5. APPARENT DIFFUSIVITY OF HYDROGEN AS INFLUENCED BY TRAPPING 423
6. DISCUSSION 424
7. CONCLUSION 425
REFERENCES 425
APPENDIX A 426
APPENDIX B 426
CHAPTER 56. 
428 
1. INTRODUCTION 428
2. PRELIMINARY CONSIDERATION 429
3. DIFFUSION IN A SYSTEM WITH IRREVERSIBLE TRAPS 429
4. DISCUSSION 430
5. CONCLUSION 432
REFERENCES 433
APPENDIX A 433
CHAPTER 57. HYDROGEN TRAPPING BY TiC PARTICLES IN IRON 436
1. INTRODUCTION 436
2. THEORETICAL BACKGROUND 437
3. EXPERIMENTAL 438
4. EXPERIMENTAL RESULTS 439
5. DISCUSSION 440
6. CONCLUSIONS 441
REFERENCES 441
CHAPTER 58. THE INTERACTION OF HYDROGEN WITH DISLOCATION IN IRON 442
1. INTRODUCTION 442
2. THEORETICAL BACKGROUND 443
3. EXPERIMENTAL 444
4. EXPERIMENTAL RESULTS ANDDISCUSSION 445
5. SUMMARY 450
REFERENCES 450
CHAPTER 59. SURFACE AND GRAIN BOUNDARY SEGREGATION OF DEUTERIUM IN NICKEL 452
1. INTRODUCTION 452
2. EXPERIMENTAL 452
3. EXPERIMENTAL RESULTS 454
4. DISCUSSION OF RESULTS 457
5. CONCLUSIONS 459
REFERENCES 459
PART 5: HYDRIDE FORMATION 462
CHAPTER 60. THE PRECIPITATION OF y-HYDRIDE PLATES IN ZIRCONIUM 464
INTRODUCTION 464
EXPERIMENTAL PROCEDURE 465
HABIT PLANES AND ORIENTATION RELATIONSHIPS 467
DISCUSSION 472
SUMMARY 474
REFERENCES 474
CHAPTER 61. THE EFFECTS OF MISFIT AND EXTERNAL STRESSES ON TERMINAL SOLID SOLUBILITY IN HYDRIDE-FORMING METALS 476
INTRODUCTION 476
EFFECT OF MISFIT CONSTRAINTS ON SOLUBILITY 
477 
ANALYSIS OF SOLUBILITY DATA 478
EFFECT OF EXTERNAL STRESSES ON SOLUBILITY 481
COMPARISON WITH OTHER WORK 482
CONCLUSION 482
REFERENCES 483
CHAPTER 62. HYDRIDE PRECIPITATION IN a/ß ZIRCONIUM ALLOYS 484
1. INTRODUCTION 484
2. METALLURGY OF PRESSURE-TUBE 
485 
3. HYDRIDE PRECIPITATION IN ANNEALED AND AS-EXTRUDED 
486 
4. HYDRIDE PRECIPITATION IN PRESSURE-TUBE ALLOYS 489
5. DISCUSSION 491
REFERENCES 494
CHAPTER 63. PHASE CHANGES IN THE NIOBIUM–HYDROGEN SYSTEM—III. ACOUSTIC STUDIES OF HYDRIDE PHASE TRANSITIONS AT H/Nb = 0.78 496
1. INTRODUCTION 496
2. EXPERIMENTAL 497
3. EXPERIMENTAL RESULTS 497
4. DISCUSSION 501
5. CONCLUSIONS 503
REFERENCES 503
CHAPTER 64. TWIST EFFECT OF V–H, Nb–H AND Ta–H ALLOYS ASSOCIATED WITH THE PRECIPITATION OF HYDRIDES 506
1. INTRODUCTION 506
2. EXPERIMENTAL 507
3. RESULTS 507
4. DISCUSSION 511
5. CONCLUSION AND SUMMARY 513
REFERENCES 513
CHAPTER 65. 
516 
1. INTRODUCTION 516
2. EXPERIMENTAL 516
3. RESULTS AND DISCUSSION 517
4. CONCLUSIONS AND SUMMARY 524
REFERENCES 524
CHAPTER 66. 
526 
Introduction 526
Experiments 527
Results and Discussion 527
References 528
CHAPTER 67. 
530 
Introduction 530
The Effect of a Uniform Stress on Hydride Precipitation 530
The Effect of a Non-Uniform Stress on Hydride Precipitation 532
Acknowledgments 533
References 533
CHAPTER 68. 
534 
Acknowledgements 535
References 535
CHAPTER 69. PHASE CHANGES IN THE NIOBIUM–HYDROGEN SYSTEM—II. LOW TEMPERATURE HYDRIDE PHASE TRANSITIONS 538
1. INTRODUCTION 538
2. EXPERIMENTAL PROCEDURE 540
3. RESULTS AND DISCUSSION 540
4. CONCLUSIONS 549
REFERENCES 549
PART 6: HYDROGEN IN AMORPHOUS METALS 552
CHAPTER 70. OVERVIEW 19: HYDROGEN IN AMORPHOUS METALS—I 554
INTRODUCTION 554
EXPERIMENTAL 556
RESULTS 557
DISCUSSION 559
CONCLUSIONS 563
REFERENCES 563
CHAPTER 71. OVERVIEW 19 SOLUBILITY, DIFFUSIVITY AND TRAPPING OF HYDROGEN IN DILUTE ALLOYS, DEFORMED AND AMORPHOUS METALS—II 564
INTRODUCTION 564
SPECIAL CASES AND COMPARISON WITH SOLUBILITY MEASUREMENTS 566
HYDROGEN IN AMORPHOUS METALS 568
DIFFUSION IN A DISORDERED MATERIAL 569
CONCLUSION 572
REFERENCES 572
CHAPTER 72. 
574 
Introduction 574
Experimental 574
Results 575
Discussion 576
Conclusions 578
Acknowledgment 579
References 579
CHAPTER 73. HYDROGEN MOBILITY IN THE AMORPHOUS ALLOY Fe Ni P B AS STUDIED BY INDUCED MAGNETIC ANISOTROPY MEASUREMENT 
580 
Introduction 580
Experimental 580
Results 581
Discussion 583
Conclusion 584
References 584
PART 7: EFFECT OF HYDROGEN ON PLASTIC DEFORMATION 586
CHAPTER 74. THE EFFECT OF HYDROGEN ON THE SOLID SOLUTION STRENGTHENING AND SOFTENING OF NICKEL 588
INTRODUCTION 588
EXPERIMENTAL 589
EXPERIMENTAL RESULTS 591
DISCUSSION 593
CONCLUSIONS 594
REFERENCES 595
CHAPTER 75. 
596 
Introduction 596
Experimental Procedure 596
Experimental Results 597
Discussion 597
Acknowledgements 598
References 598
CHAPTER 76. 
600 
Acknowledgements 601
References 602
CHAPTER 77. EFFECT OF HYDROGEN CHARGING ON STRESS-STRAIN CURVES FOR IRON WHISKERS 606
INTRODUCTION 606
EXPERIMENTAL 607
RESULTS 608
DISCUSSION 610
CONCLUSIONS 612
REFERENCES 612
CHAPTER 78. 
614 
Experimental 614
Results 615
Discussion 618
Conclusions 619
Acknowledgements 619
References 619
CHAPTER 79. EFFECT OF HYDROGEN CHARGING-DISCHARGING ON THE STRESS-STRAIN RELATIONSHIP FOR NICKEL 620
Experimental 620
Results 620
Discussion 622
Conclusions 623
References 623
CHAPTER 80. THE EFFECTS OF HYDROGEN ON THE ROOM-TEMPERATURE CREEP OF SPHEROIDIZED1040-STEEL 624
INTRODUCTION 624
EXPERIMENTAL 624
EXPERIMENTAL RESULTS 625
DISCUSSION 627
REFERENCES 629
CHAPTER 81. THE EFFECT OF HYDROGEN ON THE INITIATION OF SHEAR LOCALIZATION IN PLAIN-CARBON STEELS 630
1. INTRODUCTION 630
2. EXPERIMENTS 631
3. RESULTS 632
4. DISCUSSION 635
3. CONCLUSIONS 636
REFERENCES 636
CHAPTER 82. THE EFFECT OF HYDROGEN ON CONSTRAINED YIELDING AND FRACTURE IN A SPHEROIDIZED MEDIUM-CARBON STEEL 638
Introduction 638
Experiments 638
Results 639
Discussion 639
Acknowledgements 641
References 641
CHAPTER 83. 
644 
Introduction 644
Experimental Procedures 644
Results 645
Discussion 647
Conclusion 648
Acknowledgment 648
References 648
CHAPTER 84. 
650 
References 652
CHAPTER 85. DIRECT OBSERVATIONS OF ENHANCED DISLOCATION MOBILITY DUE TO HYDROGEN 654
Acknowledgements 656
References 656
PART 8: 
660 
CHAPTER 86. 
662 
INTRODUCTION 663
EXPERIMENTAL 663
RESULTS 665
DISCUSSION 669
SUMMARY 673
REFERENCES 674
CHAPTER 87. HYDROGEN EMBRITTLEMENT AND TRAPPING AT CRACK TIPS IN Ni-SINGLE CRYSTALS 676
INTRODUCTION 676
EXPERIMENTAL 677
RESULTS 678
DISCUSSION 680
CONCLUSIONS 682
REFERENCES 682
CHAPTER 88. DYNAMIC MODEL OF HYDROGEN-INDUCED INTERGRANULAR CRACKING 684
Introduction 684
Static Model of Hydrogen-Induced Cracking 684
Dynamic Model of Hydrogen-Induced Intergranular Cracking 686
Summary 688
Acknowledgements 688
References 688
CHAPTER 89. AN ELECTRON MICROSCOPIC STUDY OF HYDROGEN EMBRITTLEMENT IN VANADIUM—II 690
1. INTRODUCTION 690
2. EXPERIMENTAL PROCEDURE 691
3. EXPERIMENTAL RESULTS AND DISCUSSION 692
4. THEORETICAL DISCUSSION 699
5. CONCLUDING REMARKS 701
REFERENCES 702
CHAPTER 90. 
704 
Introduction 704
Experiments 704
Results and Discussion 706
Summary 706
Acknowledgements 706
References 706
CHAPTER 91. EFFECT OF SULFUR SEGREGATION AND HYDROGEN CHARGING ON INTERGRANULAR FRACTURE OF IRON 708
1. INTRODUCTION 708
2. EXPERIMENTAL PROCEDURES 709
3. RESULTS 710
4. DISCUSSION 713
5. CONCLUSION 715
REFERENCES 715
CHAPTER 92. 
716 
Materials and Test Procedure 716
Results and Discussion 717
Acknowledgements 718
References 718
CHAPTER 93. THE EFFECT OF HYDROGEN INDUCED SURFACE ASPERITIES ON FATIGUE CRACK CLOSURE IN ULTRAHIGH STRENGTH STEEL 720
Introduction 720
Materials and Experimental Procedure 720
Results and Discussion 721
Acknowledgments 722
References 722
CHAPTER 94. HYDROGEN EMBRITTLEMENT OF Ni3A1+B 726
Introduction 726
Experimental Procedure 726
Results 726
Discussion 728
Conclusions 730
References 730
Acknowledgment 730
CHAPTER 95. 
732 
Acknowledgements 734
References 734
CHAPTER 96. 
738 
Introduction 738
Experimental 738
Experimental Results and Discussion 738
Acknowledgements 740
References 740
CHAPTER 97. HYDROGEN EMBRITTLEMENT OF TITANIUM SHEET UNDER MULTIAXIAL STATES OF STRESS 744
INTRODUCTION 744
EXPERIMENTAL 745
EXPERIMENTAL RESULTS 746
DISCUSSION 748
SUMMARY 751
REFERENCES 752
CHAPTER 98. A FRACTOGRAPHIC STUDY OF GASEOUS HYDROGEN EMBRITTLEMENT AND LIQUID-METAL EMBRITTLEMENT IN A TEMPERED-MARTENSITIC STEEL 754
INTRODUCTION 754
EXPERIMENTAL 755
RESULTS 755
SUMMARY 765
REFERENCES 765
CHAPTER 99. INTERGRANULAR HYDROGEN EMBRITTLEMENT OF Co3Ti 
766 
Introduction 766
Experimental Procedure 766
Results 767
Discussion 767
Conclusion 768
References 768
AUTHOR INDEX 772

Erscheint lt. Verlag 21.9.2017
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Technik
ISBN-10 1-4831-9108-7 / 1483191087
ISBN-13 978-1-4831-9108-9 / 9781483191089
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 146,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95