Least Action Principle Of Crystal Formation Of Dense Packing Type And Kepler's Conjecture
Seiten
2001
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-4670-9 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-4670-9 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This work provides proof of Kepler's conjecture that B/O18 is the optimal density, and establishes the least action principle, which states that the hexagonal dense packings in crystals are the geometric consequence of optimization of density.
The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal “known density” of B/√18. In 1611, Johannes Kepler had already “conjectured” that B/√18 should be the optimal “density” of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that B/√18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry.
The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal “known density” of B/√18. In 1611, Johannes Kepler had already “conjectured” that B/√18 should be the optimal “density” of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler's conjecture that B/√18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry.
The basics of Euclidean and spherical geometries and a new proof of the problem of 13 spheres; circle packings and sphere packings; geometry of local cells and specific volume estimation techniques for local cells; estimates of total buckling height; the proof of the dodecahedron conjecture; geometry of type I configurations and local extensions; the proof of main theorem I; retrospects and prospects.
Erscheint lt. Verlag | 26.12.2001 |
---|---|
Reihe/Serie | Nankai Tracts in Mathematics ; 3 |
Mitarbeit |
Herausgeber (Serie): Weiping Zhang |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Geowissenschaften ► Mineralogie / Paläontologie | |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
ISBN-10 | 981-02-4670-6 / 9810246706 |
ISBN-13 | 978-981-02-4670-9 / 9789810246709 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
54,95 €
Nielsen Methods, Covering Spaces, and Hyperbolic Groups
Buch | Softcover (2024)
De Gruyter (Verlag)
109,95 €