Fluid Dynamics - Peter S. Bernard

Fluid Dynamics

Buch | Hardcover
264 Seiten
2015
Cambridge University Press (Verlag)
978-1-107-07157-5 (ISBN)
83,50 inkl. MwSt
This book provides a focused presentation of the physical and mathematical ideas upon which graduate work in fluid mechanics depends. The exposition builds to a self-contained derivation of the governing equations followed by examples of their application. Numerous opportunities are provided to employ MATLAB® in the study of fluid flows.
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math and physics taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The exposition follows an arc through the subject building towards a detailed derivation of the Navier–Stokes and energy equations followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations thus allowing a clearer view of the physics. The motivation behind many fundamental concepts such as Bernoulli's equation and the stream function are included. Many exercises are designed with a view toward using MATLAB® or equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

Professor Peter Bernard has 35 years' experience in teaching graduate level fluid mechanics at the University of Maryland. He is a fellow of the American Physical Society and associate fellow of the American Institute of Aeronautics and Astronautics. In addition to his many research articles devoted to the physics and computation of turbulent flow, he is the coauthor of the highly regarded volume Turbulent Flow: Analysis, Measurement and Prediction that has been hailed as 'probably the best for classroom use or private study' (Journal of Fluid Mechanics).

1. Introduction; 2. Eulerian and Lagrangian viewpoints, paths and streamlines; 3. Stream function; 4. Helmholtz decomposition; 5. Sources, sinks and vortices; 6. Doublets and their applications; 7. Complex potential; 8. Accelerating reference frames; 9. Fluids at rest; 10. Incompressibility and mass conservation; 11. Stress tensor - existence and symmetry; 12. Stress tensor in Newtonian fluids; 13. Navier–Stokes equation; 14. Thermodynamic considerations; 15. Energy equation; 16. Complete equations of motion; 17. Applications of Bernoulli's equation and control volumes; 18. Vorticity; 19. Applications to viscous flow; 20. Laminar boundary layers; 21. Some applications to convective heat and mass transfer.

Erscheint lt. Verlag 5.5.2015
Zusatzinfo Worked examples or Exercises; 1 Tables, unspecified; 110 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 182 x 260 mm
Gewicht 660 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Physik / Astronomie Strömungsmechanik
Technik Maschinenbau
ISBN-10 1-107-07157-7 / 1107071577
ISBN-13 978-1-107-07157-5 / 9781107071575
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
33,36