Introduction to Light Trapping in Solar Cell and Photo-detector Devices -  Stephen J. Fonash

Introduction to Light Trapping in Solar Cell and Photo-detector Devices (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
76 Seiten
Elsevier Science (Verlag)
978-0-12-416637-0 (ISBN)
27,95 € inkl. MwSt
Systemvoraussetzungen
27,77 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

New Approaches to Light Trapping in Solar Cell Devices discusses in detail the use of photonic and plasmonic effects for light trapping in solar cells. It compares and contrasts texturing, the current method of light-trapping design in solar cells, with emerging approaches employing photonic and plasmonic phenomena. These new light trapping methods reduce the amount of absorber required in a solar cell, promising significant cost reduction and efficiency.

This book highlights potential advantages of photonics and plasmonics and describes design optimization using computer modeling of these approaches. Its discussion of ultimate efficiency possibilities in solar cells is grounded in a review of the Shockley-Queisser analysis; this includes an in-depth examination of recent analyses building on that seminal work.


New Approaches to Light Trapping in Solar Cell Devices discusses in detail the use of photonic and plasmonic effects for light trapping in solar cells. It compares and contrasts texturing, the current method of light-trapping design in solar cells, with emerging approaches employing photonic and plasmonic phenomena. These new light trapping methods reduce the amount of absorber required in a solar cell, promising significant cost reduction and efficiency. This book highlights potential advantages of photonics and plasmonics and describes design optimization using computer modeling of these approaches. Its discussion of ultimate efficiency possibilities in solar cells is grounded in a review of the Shockley-Queisser analysis; this includes an in-depth examination of recent analyses building on that seminal work.

Chapter 1

A Brief Overview of Phenomena Involved in Light Trapping


Abstract


Light trapping is the capturing of photons for use in applications such as solar cells, sensing, photo-electrochemistry, and thermal photovoltaics. Light enters the structures involved in these applications through refraction, scattering, or the systematic scattering provided by diffraction. The chapter examines these entry paths and the various optical processes that can be present in a light trapping structure.

Keywords


light absorption
light trapping
solar cells
photovoltaics
photodetectors
photons
radiation modes
trapped traveling modes
trapped localized modes
Light trapping is the capturing of as many photons as possible from an impinging electro-magnetic (E-M) wave with the objective of generating heat or charge carriers, excitons, or both [1]. For our purposes, the “light” being trapped may lie anywhere in that part of the E-M spectrum extending from the infrared to the ultraviolet. This range encompasses interesting frequencies, such as the photon-rich part of the solar spectrum, the emission and absorption frequencies of living things, and astronomically useful frequencies. Trapping of this light is vital to many applications, including sensing [2,3], photovoltaics [1], photo-electrochemistry [1,4], solar fuel production [5], and thermal photovoltaics [6]. We limit ourselves in this text to light trapping for production of charge carriers, excitons, or both. Some discussions break light trapping into light capture and light trapping. With the thin devices and, in particular, the thin photon absorbers now used in high-speed detectors and advanced solar cells today, it is rather artificial to separate light capture and light trapping. In this text, they are treated as one light trapping process, as seen in Figure 1.1.
Fig. 1.1 A control region showing the definition of light trapping used in this text. Light trapping endeavors to minimize the light energy propagating away at the top control surface. Normal impingement onto a general structure is assumed in this figure.
When light enters a structure, we will find that it can reside in a number of different modes: radiation modes, trapped traveling modes (guided modes1 and Bloch modes2), and trapped localized modes (Mie modes3 and plasmonic modes) as well as hybridizations4 of these. We will develop familiarity with all of this terminology in Chapter 2. For now, we can note that light trapping may be thought of as the task of populating some or all of these various modes possible in a structure with photons.
The optical phenomena that provide the key tools for light trapping are listed in Table 1.1 along with their definitions, as utilized in this monograph. After reviewing these tools in the remainder of this chapter, we will move in Chapter 2 to examining those modes in which photons may be stored in a structure. In Chapter 3, we will look at various light-trapping structures. As may be seen from Figure 1.2a–d, these structures can range from devices with simple ¼ wavelength antireflection coatings (ARCs) to devices with honeycomb gratings. When needed, we will consider polarization effects. Chapter 4 provides final comments on light-trapping structures and approaches.

Table 1.1

Light-Trapping Phenomena and Definitions

Interference The phenomenon whereby two or more E-M waves existing at a point constructively or destructively add together to some degree at that point.
Scattering The result of impinging E-M waves bouncing off of objects by being absorbed and emitted. Material property dependent. In general, can be elastic or inelastic.6
Reflection The result of some portion of an impinging E-M wave being scattered backwards. Material property dependent. Generally taken as elastic.6
Diffraction The result of impinging E-M waves bouncing off of objects by being absorbed, effectively instantaneously emitted, and constructively interfering in certain specific directions. Taken as elastic.6
Plasmonics The result of an impinging E-M wave being absorbed by the extremely numerous electrons of a metal thereby exciting an oscillating plasma. This plasma dissipates energy through electron collisions and also reradiates an E-M scattered wave. Material property dependent. Over all, inelastic.6
Refraction The result of an impinging E-M wave changing direction and wavelength due to a change in the transmission medium through which it is passing. Material property dependent. Taken as elastic.6
Fig. 1.2 Some examples of light-trapping structures: (a) A “traditional” planar solar cell with an ARC; (b) a solar cell with a periodically arranged pyramidal TCO array; (c) a solar cell with a periodic array of TCO domes; (d) a solar cell with a randomly textured TCO layer; and (e) a solar cell with a honeycomb nanoscale grating structure.
In our brief discussion of the phenomena of Table 1.1, we occasionally will use the approximation of geometrical optics.5 However, our approach will generally be to employ physical optics and, when needed, to implement it with full numerical solutions of Maxwell’s equations.

1.1. Interference


Interference is listed first in Table 1.1 because it is the defining trait of waves. This basic behavior can be considered by watching two electric field waves coming from two plane wave sources (source 1 and source 2). If we examine these waves at some point which is 1→ from source 1 of the first wave and 2→ from source 2 of the second wave, then wave 1 at this point is of the form xiˆ+Ayjˆ+Azkˆeik1→r1→−ω1t with k-vector 1→ and angular frequency ω1, whereas, wave 2 is of the form xiˆ+Byjˆ+Bzkˆeik2→r2→−ω2t with k-vector 2→ and angular frequency ω2. As we know, these waves simply add up at our point of interest to

→=Axei[k1→r1→−ω1t]+Bxei[k2→r2→−ω2t]iˆ+Ayei[k1→r1→−ω1t]+Byei[k2→r2→−ω2t]jˆ+Azei[k1→r1→−ω1t]+Bzei[k2→r2→−ω2t]kˆ

(1.1)

where is the total electric field. The total E-M energy density U present at our arbitrary point is proportional to the square of the magnitude of the electric field [8,9]; i.e.,

=ɛξ→⋅ξ→*

(1.2)

where →*is the complex conjugate of and the permittivity at the point in question. The total photon density is therefore proportional to this U. Using Eq. 1.2 it follows that,

=εAx2+Bx2+AxBxe−i[k1→r1→−ω1t]ei[k2→r2→−ω2t]         + AxBxei[k1→r1→−ω1t]e−i[k2→r2→−ω2t]+Ay2+By2+AyBye−i[k1→r1→−ω1t]ei[k2→r2→−ω2t]         + AyByei[k1→r1→−ω1t]e−i[k2→r2→−ω2t]+Az2+Bz2+AzBze−i[k1→r1→−ω1t]ei[k2→r2→−ω2t]         + AzBzei[k1→r1→−ω1t]e−i[k2→r2→−ω2t]

(1.3a)
This expression can be somewhat simplified to

=ɛAx2+Bx2+Ay2+By2+Az2+Bz2+2AxBx+2AyBy+2AzBzcosk1→⋅r1→−k2⋅→r2→+ω2t−ω1t

(1.3b)

Equation 1.3b is interesting because it shows that the quantity ¯, energy density averaged over time and space, has the value that we would probably expect; i.e., it is

¯=ɛAx2+Bx2+Ay2+By2+Az2+Bz2

(1.4)

The cosine term in Eq. 1.3b also shows that interference between these waves can increase or decrease the expected average energy density ¯ at different places and times by as much as 2AxBx +...

Erscheint lt. Verlag 15.9.2014
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
ISBN-10 0-12-416637-7 / 0124166377
ISBN-13 978-0-12-416637-0 / 9780124166370
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 7,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99