Advanced Power Generation Systems -  Ibrahim Dincer,  Calin Zamfirescu

Advanced Power Generation Systems (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
656 Seiten
Elsevier Science (Verlag)
978-0-12-383861-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
118,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems.

The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems.


  • The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration
  • Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass
  • Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses
  • Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Front Cover 1
Advanced Power Generation Systems 4
Copyright 5
Contents 6
Acknowledgments 10
Preface 12
Chapter 1: Fundamentals of Thermodynamics 14
1.1. Introduction 14
1.2. Thermodynamic Properties and Basic Concepts 15
1.3. Equations of State and Ideal Gas Behavior 28
1.4. Laws of Thermodynamics 31
1.5. Exergy 40
1.6. Balance Equations for Thermodynamic Analysis 45
1.6.1. Mass Balance Equation 45
1.6.2. Energy Balance Equation 46
1.6.3. Entropy Balance Equation 47
1.6.4. Exergy Balance Equation 49
1.7. Efficiency Definitions 52
Example 53
1.8. Concluding Remarks 62
Study Problems 63
References 66
Chapter 2: Energy, Environment, and Sustainable Development 68
2.1. Introduction 68
2.2. Energy Resources Available on Earth 69
2.3. Environmental Impact of Power Generation Systems 85
2.4. Sustainability Assessment of Power Generation Technologies 94
2.5. Concluding Remarks 104
Study Problems 104
References 106
Chapter 3: Fossil Fuels and Alternatives 108
3.1. Introduction 108
3.2. Fuels Classification and Main Properties 110
3.3. Fossil Fuels 117
3.3.1. Coal 117
3.3.2. Petroleum 127
3.3.2.1. Crude Oil 127
3.3.2.2. Natural Gas 131
3.3.2.3. Shale Oil 132
3.3.2.4. Oil Sands 133
3.3.3. Gas Hydrates 134
3.3.4. Petrochemical Fuels 135
3.4. Alternative Fuels 139
3.4.1. Biomass 139
3.4.2. Biofuels, Biogas, and Fuel Blends 142
3.4.3. Hydrogen 147
3.5. Concluding Remarks 151
Study Problems 152
References 154
Chapter 4: Hydrogen and Fuel Cell Systems 156
4.1. Introduction 156
4.2. Hydrogen 157
4.3. Hydrogen Production Methods 162
4.3.1. Water Electrolysis 165
4.3.2. Thermochemical Cycles 171
4.3.3. Gasification and Hydrocarbon Reformation 177
4.3.4. Photochemical and Photo-Biochemical Methods 179
4.4. Fuel Cells 182
4.4.1. Proton-Exchange-Membrane Fuel Cells 184
4.4.2. Phosphoric Acid Fuel Cells 185
4.4.3. Solid Oxide Fuel Cells with Proton Conduction (SOFC+) 186
4.4.4. Alkaline Fuel Cells 187
4.4.5. Solid Oxide Fuel Cells with Oxygen Ion Conduction 187
4.4.6. Molten Carbonate Fuel Cells 188
4.4.7. Direct Methanol Fuel Cells 189
4.4.8. Direct Ammonia Fuel Cells 191
4.5. Fuel Cell Modeling 191
4.6. Optimization of Fuel Cell Systems 199
4.7. Integrated Fuel Cell Systems for Power Generation 201
4.8. Concluding Remarks 208
Study Problems 208
References 210
Chapter 5: Conventional Power Generating Systems 212
5.1. Introduction 212
5.2. Vapor Power Cycles 213
5.2.1. The Simple Rankine Cycle 214
5.2.2. Exergy Destructions in Rankine Power Plants 222
5.2.3. Ideal Reheat Rankine Cycle 235
5.2.4. Ideal Regenerative Rankine Cycle 237
5.2.5. Steam Rankine Power Stations 247
5.2.5.1. Reheating-Regenerative Steam Rankine Cycle 247
5.2.5.2. Coal-Fired Power Stations 254
5.2.6. Organic Rankine Cycles 267
5.3. Gas Power Cycles 276
5.3.1. Totally Reversible Gas Power Cycles 276
5.3.2. Otto and Diesel Power Cycles 279
5.3.3. Gas Turbine (Brayton) Power Cycles 283
5.3.3.1. Air-Standard Brayton Cycle 284
5.3.3.2. Regenerative Brayton Cycle 290
5.3.3.3. Reheat-Regenerative Brayton Cycle 292
5.3.3.4. Brayton Cycle with Intercooler 295
5.3.3.5. Exergy Destructions in Brayton Cycle Power Plants 295
5.4. Combined Cycle Power Plants 314
5.5. Hydropower Plants 316
5.6. Concluding Remarks 319
Study Problems 319
References 323
Chapter 6: Nuclear Power Generation 324
6.1. Introduction 324
6.2. Nuclear Reactions 325
6.3. Nuclear Fuel 332
6.4. Nuclear Reactors 337
6.4.1. Reactivity Control 337
6.4.2. Exergy Destructions in a Nuclear Reactor 341
6.4.3. Conventional Reactors 344
6.4.4. Advanced Nuclear Reactors 350
6.4.5. Generation IV Nuclear Reactors 352
6.5. Nuclear-Based Cogeneration Systems 367
6.6. Concluding Remarks 379
Study Problems 379
References 381
Chapter 7: Renewable-Energy-Based Power Generating Systems 382
7.1. Introduction 382
7.2. Solar Power Generation Systems 383
7.2.1. Solar Radiation 384
7.2.2. Classification of Solar Power Generators 390
7.2.3. Photovoltaic Systems 393
7.2.3.1. Photovoltaic Cells 393
7.2.3.2. Concentrated Photovoltaic Systems 402
7.2.3.3. Photovoltaic-Thermal Systems 408
7.2.4. Concentrated Photothermal Systems 415
7.2.4.1. Central Receiver Power Stations 415
7.2.4.2. Through-Type Concentrated Solar Power Systems 428
7.2.4.3. Parabolic Dish Units 434
7.3. Wind Energy Systems 438
7.4. Geothermal Power Generation Systems 447
7.5. Biomass Energy Systems 454
7.6. Ocean Energy Systems 459
7.7. Concluding Remarks 463
Study Problems 463
References 465
Chapter 8: Integrated Power Generating Systems 468
8.1. Introduction 468
8.2. Multistaged Systems 470
8.3. Cascaded Systems 481
8.4. Combined Systems 486
8.5. Hybrid Systems 501
8.6. Case Studies 508
8.6.1. Integration Options of a Coal-Fired Power Plant 508
8.6.1.1. Reference System: Conventional Coal-Fired Power Plant 508
8.6.1.2. System Integration Option 1: Integration of an Advanced Coal Gasifier with a Rankine Plant 512
8.6.1.3. System Integration Option 2: Coal/Biomass Gasification with Rankine Plant 513
8.6.1.4. System Integration Option 3: Gasifier+SOFC+GT+Rankine Plant 515
8.6.1.5. System Integration Option 4: G+SOFC+GT+Two Rankine Cycles+Cogeneration 517
8.6.1.6. Comparison of the Integrated Systems 518
8.6.2. Exergoeconomic and environmental optimization of a CCPP 519
8.6.3. Optimization of a Closed Multistage Flash ORC with Two-Phase Flow Expanders 521
8.7. Concluding Remarks 524
Study Problems 525
References 528
Chapter 9: Multigeneration Systems 530
9.1. Introduction 530
9.2. Key Processes and Subsystems for Multigeneration 532
9.3. Assessment and Optimization of Multigeneration Systems 537
9.4. Case Studies 541
9.4.1. Thermally Driven Multigeneration System 541
9.4.2. Micro-Gas-Turbine-Based Multigeneration System 548
9.4.2.1. System Modeling 548
9.4.2.2. System Optimization 551
9.4.3. Integrated Biomass-Fueled Multigeneration System 553
9.4.4. Solar-Based Coal Gasification System with Multigeneration 558
9.4.5. Solar-Based Multigeneration System with Hydrogen Production 565
9.4.6. Solar-Based Trigeneration of Power, Heating, and Desalination 567
9.4.7. Multigeneration System for Power, Hot Water, and Fuel from Biomass and Coal 572
9.4.8. SOFC-ORC-Absorption Trigeneration System Fueled with Natural Gas and Biomass 575
9.4.9. Hybrid Solar/Syngas Trigeneration with ORC, SOFC, and Absorption 577
9.4.10. Ammonia-Water-Based Trigeneration System for Waste Heat Recovery 579
9.4.11. Gas Turbine Trigeneration System with Absorption Cooling, Heating, and Power 579
9.5. Concluding Remarks 582
Study Problems 583
References 586
Chapter 10: Novel Power Generating Systems 588
10.1. Introduction 588
10.2. Novel ammonia-water power cycles 589
10.3. Solar Thermoelectrical Power Generation 600
10.4. Chemical Looping Combustion for Power Generation 603
10.5. Linear Engine Power Generators 605
10.6. Concluding Remarks 607
Study Problems 607
References 609
Appendix A: Conversion Factors 610
Appendix B: Thermophysical Properties 612
Index 630

1.7 Efficiency Definitions


Efficiency is a major criterion for assessment of systems, applications, and processes of any kind. The term efficiency originates mainly from thermodynamics. The attempt of assessing heat conversion into work led to its initial formulation as the “net work generated per total heat energy input.” This efficiency criterion is based on the FLT, also called energy efficiency. Equation (1.27) expresses the energy efficiency for a heat engine.

The general efficiency expression of a system—as a measure of its performance and effectiveness—is represented by the ratio of useful output per required input

=UsefuloutputTotalinput

  (1.66)

If the system is an energy system then its input and output must be forms of energy. Therefore, for an energy system, energy efficiency is written as

=EusefulEinput

  (1.67)

where Euseful is energy delivered in the desired (useful) form (sometimes denoted as energy output or as energy recovered), Einput is the energy input (sometimes called expended energy).

Any source of energy is characterized by a maximum potential of doing work. This maximum is the exergy, and, as discussed above, it represents the work generated by reversible processes. This is a measure of perfection because it assumes that there are no irreversibilities. In exergetic view, the efficiency must be the ratio between exergy associated to the useful output and the exergy associated to the input. One writes

=ExusefulExinput=1-Exd,tExinput

  (1.68)

where Exuseful is the exergy delivered as useful output (or exergy in product outputs or delivered exergy; in some cases this exergy can be also a recovered exergy), Exinput is the exergy in inputs (sometimes this exergy is denoted as the exergy consumed by the system). In Eq. (1.68) the term Exd,t refers to the so-called “total exergy destruction”. The total exergy destruction represents the sum of the exergy destruction within the system (Exd,sys) and the exergy destruction at the interaction between the system and the surroundings (Exd,surr). Here (Exd,surr) represents an exergy lost (Exd,surr = Exd,loss). In this view, the exergy balance for the overall system is Exinput = Exproducts + Exd,sys + Exd,loss = Exproducts + Exd,t.

Some books (e.g., Cengel and Boles, 2010) define the second law efficiency as the ratio of the actual work delivered as useful to the reversible work which would ideally be delivered under the same operational conditions. Because the reversible work is the highest possible it remains that the second law efficiency must be < 1. Second law efficiency of heat engines—or power generation systems—is

HE=W˙actualW˙rev

  (1.69)

Example

Figure 1.17 represents a power generation system. In order to operate the system consumes exergy—denoted on the diagram with Excons. Assume for Excons to be the exergy of a fuel or high-temperature heat (e.g., concentrated solar radiation, geothermal heat, recovered waste heat). It is assumed further that the power generation system is equipped with a heat exchanger that operates reversibly and has the role of directing the exergy to the heat engine. In many practical power generation systems the role of this heat exchanger is played by the furnace or steam generator. The system is not necessarily capable of using all exergy provided and therefore, as shown in the figure, a part of it must be lost, Exlost Because the heat exchanger is assumed to be reversible, the ExBE is Excons = Exused + Exlost (see the figure). Note that here Exlost = Exd,surr.

Figure 1.17 Thermodynamic model for exergy efficiency of power generation systems.

There are two possible models for the power generation efficiency. As observed from the manner in which the system boundary is shown (see the figure), the model A assumes that the actual exergy input to the heat engine system is Exused. Therefore, in this case reversible work which can be potentially delivered by n ideal heat engine is Wrev,deliv = Exused = Exinput or ˙rev,deliv=E˙xcons-E˙xlost; thus the exergy efficiency is

ModelA=W˙delivE˙xcons-E˙xlost

Model B considers a wider system boundary. The exergy balance for all system is in this case Excons = Exdeliv + ∑Exd, where ∑Exd is the total exergy destruction. Recall that total exergy destruction is equal to the sum of exergy destruction due to internal irreversibilities (Exd,sys) and the exergy destruction due to the interaction with the environment (Exd,surr). The reversible work associated with Model B is equal to the exergy consumed, ˙rev,deliv=E˙xcons. Consequently, for Model B the exergy efficiency is

ModelB=W˙delivE˙xcons

One notes that exergy efficiency based on Model B assesses the ability of a power generation system to convert the consumed exergy into work, but at the same time it quantifies the utilization fraction of the provided exergy. Keeping in mind that Exd,surr = Exlost the exergy utilization factor can be defined with the following equation:

=1-ExlostExcons

The exergy utilization factor takes values between 0 and 1. When f = 1 the source exergy is fully utilized by the power generation system; in this case the exergy destruction at system interaction with the surroundings is not existent: Exd,surr = Exlost = 0. Otherwise there are losses associated due to the interaction of the system with the surroundings. These losses reflect the incapacity of the system to utilize the source exergy integrally. With the help of the exergy utilization factor one obtains the following expression for the exergy efficiency of Model A:

ModelA=W˙delivfE˙xcons

It is remarked that when f = 1 one has ψModelA = ψModelB. Exergy efficiency of a heat pump or a refrigerator according to the second law can be expressed as the ratio of COP to reversible work as follows:

HP=COPCOPrev=W˙rev,inW˙in

  (1.70)

where ˙rev,in represents the work consumption by the reversible heat pump or refrigerator and ˙in is the actual work consumption.

In Table 1.8 efficiency formulations for some important devices for power generation are presented. The first device listed in the table is the turbine (#1), which is a work-producing apparatus operating on the principle of expansion of a fluid that eventually generates useful work. Although in practice there are heat losses from turbine shell, these are minor with respect to work generation. A high enthalpy flow enters the turbine, work is produced, and a lower enthalpy flow exits the turbine.

Table 1.8

Energy and Exergy Efficiency of Some Important Devices for Power Generation

1. Turbine
Balance equations:
:m˙1=m˙2=m˙
:m˙1h1=W˙+m˙2h2
:m˙1s1+S˙gen=m˙2s2
:m˙h1−h2−T0s1−s2=W˙+E˙xd
Efficiency equations:
=W˙W˙s=m˙h1−h2m˙h1−h2s
=W˙E˙xcons=W˙Ex1−Ex2=m˙h1−h2m˙h1−h2−T0s1−s2
2. Compressor
Balance equations:
:m˙1=m˙2=m˙
:m˙1h1+W˙=m˙2h2
:m˙1s1+S˙gen=m˙2s2
:W˙=m˙h2−h1−T0s2−s1+E˙xd
Efficiency equations:
=W˙sW˙=m˙h2s−h1m˙h2−h1
=W˙revE˙xcons=m˙h2s−h1m˙h1−h2−T0s1−s2
3. Pump
Balance equations:
:m˙1=m˙2=m˙
:m˙1h1+W˙=m˙2h2
:m˙1s1+S˙gen=m˙2s2
:W˙=m˙h2−h1−T0s2−s1+E˙xd
Efficiency...

Erscheint lt. Verlag 12.9.2014
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-12-383861-4 / 0123838614
ISBN-13 978-0-12-383861-2 / 9780123838612
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 27,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 27,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99