Biorefineries -

Biorefineries (eBook)

Integrated Biochemical Processes for Liquid Biofuels
eBook Download: PDF | EPUB
2014 | 1. Auflage
296 Seiten
Elsevier Science (Verlag)
978-0-444-59504-1 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
137,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Biorefineries outlines the processes and steps to successfully scale up production of two types of biofuels, butanol and ethanol, from cellulosic residues for commercial purposes. It covers practical topics, including biomass availability, pretreatment, fermentation, and water recycling, as well as policy and economic factors. This reflects the unique expertise of the editor team, whose backgrounds range from wood and herbaceous feedstocks to process economics and industrial expertise. The strategies presented in this book help readers to design integrated and efficient processes to reduce the cost of production and achieve an economically viable end product


  • Outlines the economic benefits of designing a single operational process.
  • Includes all currently available processes on pretreatment, fermentation and recovery
  • Covers all pretreatment, fermentation, and product recovery options
  • Focuses on biofuels but acts as a stepping stone to develop cost-efficient processes for an array of commodity chemicals

Biorefineries outlines the processes and steps to successfully scale up production of two types of biofuels, butanol and ethanol, from cellulosic residues for commercial purposes. It covers practical topics, including biomass availability, pretreatment, fermentation, and water recycling, as well as policy and economic factors. This reflects the unique expertise of the editor team, whose backgrounds range from wood and herbaceous feedstocks to process economics and industrial expertise. The strategies presented in this book help readers to design integrated and efficient processes to reduce the cost of production and achieve an economically viable end product Outlines the economic benefits of designing a single operational process. Includes all currently available processes on pretreatment, fermentation and recovery Covers all pretreatment, fermentation, and product recovery options Focuses on biofuels but acts as a stepping stone to develop cost-efficient processes for an array of commodity chemicals

Front Cover 1
Biorefineries: Integrated Biochemical Processes for Liquid Biofuels 4
Copyright 5
Contents 6
Contributors 14
Preface 16
About the Editors 18
Part I: Cellulosic Biomass Processing & Biorefinery Road Map
Chapter 1: An Overview of Existing Individual Unit Operations 22
1.1. Introduction 22
1.2. Biochemical Processes 24
1.2.1. Biomass Pretreatment Technologies and Their Challenges 26
1.2.2. Physical Pretreatment 28
1.2.3. Chemical and Physicochemical Pretreatment 29
1.2.4. Biological Pretreatment 30
1.3. Enzymatic Hydrolysis 30
1.3.1. Enzymatic Processes 30
1.3.2. Factors Affecting the Enzymatic Process 31
1.4. Ethanol Production by Fermentation 31
1.4.1. Process Requirements for Ethanol-Fermenting Organisms 32
1.4.2. Fermentation Operations and Processes 33
1.4.3. Fermentation Inhibitors 33
1.4.4. Product Recovery 34
1.4.5. Methods for Breaking the Azeotrope 35
1.5. Butanol Production by Fermentation 35
1.5.1. Processes for n -Butanol Production 35
1.5.2. Fermentation Modes of Operation 37
1.5.3. Recovery and In Situ Separation 37
1.5.4. Detoxification of Inhibitory Compounds 39
1.5.5. Strain Improvement 40
1.6. Thermochemical Conversion 41
1.6.1. Initial Processes—Preparation Stages 41
1.6.2. Thermochemical Treatment—Gasification 41
1.6.3. Cleaning and Conditioning of Syngas 42
1.6.4. Product Manufacturing Stage—Catalytic Reaction and Syngas Fermentation 43
1.6.5. Syngas Fermentation 43
1.7. Perspectives 44
References 45
Chapter 2: Biomass for Biorefining: Resources, Allocation, Utilization, and Policies 56
2.1. Introduction 56
2.1.1. Role of Biomass 56
2.1.2. Biomass Availability 57
2.1.3. Allocation of Supply 58
2.1.4. Overcoming Utilization Issues 58
2.1.5. Policies and Statutes 59
2.2. Biomass Resources 59
2.2.1. Types of Biomass 59
2.2.2. Supply of Biomass 61
2.2.3. Production of Biomass 63
2.3. Biomass Allocation 64
2.3.1. Uses of Biomass 64
2.3.2. Biomass Logistics 66
2.4. Biomass Utilization 66
2.4.1. Pretreatment of Biomass 66
2.4.2. Genetic Modification of Biomass 67
2.4.3. Biomass Sites of Use 68
2.5. Biomass Policies 69
2.5.1. Biofuel Policies 69
2.5.2. Land Use and GHG Requirements 70
2.5.3. Regulation of Genetic Engineering 71
2.6. Perspectives 73
References 74
Chapter 3: Biorefinery Roadmaps 78
3.1. Introduction: The Biorefinery Vision for Energy, Chemical, and Material Sustainability 78
3.2. Sustainability as a New Business Model 82
3.3. Achieving Integrated Processing 84
3.4. Perspectives 86
References 86
Chapter 4: Integration of (Hemi)-Cellulosic Biofuels Technologies with Chemical Pulp Production 92
4.1. Integrated Forest Biorefinery Concepts 92
4.1.1. Woody Biomass as a Multiproduct Feedstock 92
4.1.2. Opportunities for Integration 93
4.1.3. Recovery and Utilization of Non-Hemicellulose Fractions 94
4.2. Hemicelluloses Derived from Chemical Pulping Processes 98
4.2.1. Hemicelluloses 98
4.2.2. Hemicelluloses from Thermomechanical Pulping and Chemomechanical Pulping 99
4.2.3. Hemicelluloses from Sulfite Pulping 100
4.2.4. Hemicelluloses from Dissolving Pulp Production 101
4.2.5. Hemicellulose Preextractions Prior to Pulping: Autohydrolysis 102
4.2.6. Hemicellulose Preextractions Prior to Pulping: Alkaline Extraction 105
4.3. Integration of Hemicellulose Recovery and Utilization 107
4.3.1. Processing Options for the Generation of Products from Recovered Polymeric Hemicellulose 107
4.3.2. Processing Options for the Generation of Products from Hemicellulose Monomers 108
4.4. Perspectives 110
References 110
Chapter 5: Integrated Processes for Product Recovery 120
5.1. Introduction 120
5.2. Alternative Product Recovery Techniques 121
5.2.1. Adsorption 121
5.2.2. Liquid-liquid Extraction 123
5.2.3. Pervaporation 125
5.2.3.1. Liquid membranes 125
5.2.3.2. Silicalite composite membranes 126
5.2.4. Vacuum Fermentation and Simultaneous Recovery 126
5.2.5. Gas Stripping 127
5.2.6. Use of Other Separation Techniques 128
5.3. Integrated Product Recovery Processes 129
5.3.1. Ethanol 129
5.3.2. Butanol 130
5.3.3. 2,3-Butanediol 131
5.3.3.1. Recovery by pervaporation 131
5.3.3.2. Recovery by phase salting out 132
5.3.3.3. Removal of butanediol by extraction 133
5.3.3.4. Recovery of 2,3-butanediol by solvent extraction and pervaporation 133
5.4. Perspectives 134
Acknowledgments 134
References 135
Part II: Cellulosic Ethanol 138
Chapter 6: Development of Growth-Arrested Bioprocesses with Corynebacterium glutamicum for Cellulosic Ethanol Production from C 140
6.1. Introduction 140
6.2. What is a Growth-Arrested bioprocess? 141
6.2.1. Characteristics of Growth-Arrested Bioprocesses 141
6.2.2. Process Design Options for Growth-Arrested Bioprocesses 142
6.3. Research and Development for Cellulosic Ethanol Production by C. glutamicum 144
6.3.1. Metabolic Engineering for Highly Efficient Conversion of Sugar Mixtures 145
6.3.2. Tolerance to Fermentation Inhibitors Derived from Lignocellulosic Biomass 146
6.4. Other Applications of Growth-Arrested Bioprocess in Biorefineries 147
6.4.1. Amino Acids 147
6.4.2. Isobutanol 151
6.4.3. D-Lactic Acid 152
6.5. Perspectives 153
References 154
Chapter 7: Consolidated Bioprocessing for Ethanol Production 160
7.1. Introduction 160
7.2. Biochemical Processes for Ethanol Production from Cellulosic Biomass 161
7.2.1. Pretreatment 161
7.2.2. Cellulase Production 161
7.2.3. Enzymatic Hydrolysis 163
7.2.4. Microbial Fermentation 163
7.2.5. Product Recovery 165
7.3. Development of Biomass Processing Configurations 165
7.4. Aspects of Consolidated Bioprocessing 166
7.4.1. Economic Benefits of CBP 166
7.4.1.1. The effects of microbe-enzyme synergy in CBP 167
7.4.1.2. The use of thermophiles in CBP 167
7.5. Approaches to Developing CBP-enabling Microorganisms 168
7.5.1. The Native Strategy for Developing CBP-enabling Microorganisms 168
7.5.2. The Recombinant Strategy for Developing CBP-enabling Microorganisms 170
7.6. Perspectives 172
References 172
Chapter 8: Integration of Ethanol Fermentation with Second Generation Biofuels Technologies 180
8.1. Integration of Fermentation into Cellulosic Biofuel Processes 180
8.2. Fermentation Approaches Employed in First-Generation Ethanol Processes 182
8.2.1. Processes for First-Generation Ethanol 182
8.2.2. Mode of Operation and Cell Recycle 183
8.3. Integration of Lignocellulose Hydrolyzate Fermentation 186
8.3.1. Hydrolyzate-Derived Inhibitors 187
8.3.2. Xylose Fermentation 188
8.3.3. High-Solids Integration and Fermentation Mode of Operation 189
8.3.4. Examples of Fermentation Integration in Cellulosic Biofuel Processes 190
8.4. Aerobic Yeast Cultivation for the Production of Cell Mass 191
8.4.1. Production of Yeast Cell Mass from Sugar and Starch Streams 191
8.4.2. Generation of Cell Mass from Hydrolyzates 193
8.5. Case Study: Aerobic Cultivation of S. cerevisiae TMB-3400-FT30-3 on Dilute Acid-Pretreated Softwood Hydrolyzate 194
8.5.1. Media Requirements for Aerobic Growth 195
8.6. Perspectives 197
References 198
Part III: Cellulosic Butanol 208
Chapter 9: Mixed Sugar Fermentation by Clostridia and Metabolic Engineering for Butanol Production 210
9.1. Introduction 210
9.2. Mixed-Sugar Fermentation by Solventogenic Clostridia 213
9.3. Metabolic Engineering of Solventogenic Clostridia for Butanol Production 215
9.3.1. Simultaneous and Efficient Use of Pentose and Hexose Sugars 215
9.3.2. Production of Enhanced Levels of Butanol 216
9.3.3. Elimination of Acetone Production 218
9.4. Perspectives 219
Acknowledgements 220
References 220
Chapter 10: Integrated Bioprocessing and Simultaneous Product Recovery for Butanol Production 224
10.1. Introduction 224
10.2. Recovery of Butanol by Adsorption 226
10.2.1. Use of Glucose 227
10.3. Recovery of Butanol by Extraction 227
10.3.1. Use of Glucose 227
10.3.2. Use of Whey Permeate 229
10.3.3. Extractive Production of Butanol from Lignocelluloses 230
10.4. Recovery of Butanol by Perstraction 231
10.4.1. Use of Glucose 231
10.4.2. Use of Potato Waste 231
10.4.3. Use of Whey Permeate or Lactose 231
10.4.4. Use of Lignocellulosic Biomass 232
10.4.4.1. Simultaneous saccharification, fermentation, and recovery 232
10.5. Separation of Butanol by Gas Stripping 232
10.5.1. Use of Whey Permeate 232
10.5.2. Use of Glucose 233
10.5.3. Use of Cellulosic Hydrolyzates and Cellulosic Biomass 234
10.6. Recovery of Butanol by Reverse Osmosis 234
10.6.1. Use of Glucose 234
10.7. Recovery of Butanol by Pervaporation 235
10.7.1. Use of Glucose 235
10.7.2. Use of Whey Permeate 236
10.8. Recovery of Butanol Using a Vacuum 237
10.8.1. Use of Glucose 237
10.9. Process Economics of Butanol Production 237
10.10. Perspectives 238
References 238
Chapter 11: Integrated Production of Butanol from Glycerol 244
11.1. Introduction: Glycerol Glut 244
11.1.1. Value-Added Conversion of Glycerol 245
11.2. Glycerol-to-Butanol Conversion 246
11.2.1. Improving Product Yield and Productivity 247
11.2.2. Butanol Toxicity and Extractive Fermentation 248
11.3. Integrated Biorefinery 249
11.4. Perspectives 250
References 250
Part IV: Process Economics & Farm-Based Biorefinery
Chapter 12: Process Economics of Renewable Biorefineries: Butanol and Ethanol Production in Integrated Bioprocesses from Lignoc 256
12.1. Introduction 256
12.2. Program for Material and Energy Balance and Economic Analysis 258
12.3. Process Development and Economics of Butanol Production from Corn 258
12.4. Process Economics of Butanol Production from Glycerol 262
12.5. Economics of Butanol Production from Lignocellulosic Biomass 264
12.6. Economics of Ethanol Production from Corn and Lignocellulosic Biomass 266
12.7. Perspectives 270
Acknowledgments 271
References 271
Chapter 13: Integrated Farm-Based Biorefinery 274
13.1. Introduction 274
13.2. The integrated farm-Based Biorefinery (IFBBR) 276
13.3. Biological Conversion Chemistry 277
13.4. Mass-and-Energy Balances 280
13.5. Advantages of the IFBBR System over Corn Stover Ethanol Production 284
13.6. Perspectives 285
Acknowledgment 288
References 288
Index 290

Chapter 2

Biomass for Biorefining


Resources, Allocation, Utilization, and Policies


Stephen R. Hughes1,*,; Nasib Qureshi2    1 United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, Peoria, Illinois, USA
2 USDA, ARS, NCAUR, Bioenergy Research Unit, Peoria, Illinois, USA
† Mention of trade names or commercial products is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.
* Corresponding author: Stephen.Hughes@ars.usda.gov

Abstract


This chapter discusses the importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass use. Bioenergy development depends on maximizing the amount of biomass obtained from agriculture and forestry, while prioritizing nature conservation and the protection of soils, water, and biodiversity. The major challenges facing the commercial production of biofuels and bioproducts are sustainable biomass availability and capital-intensive biomass processing facilities. The two main competitors for biomass resources are biopower and biofuels, and their future status depends on the federal and state regulations governing them. A combination of policies encouraging infrastructure investment and supporting favorable market conditions appears to be the most effective means for establishing an economically sustainable biofuel supply chain. Understanding the extent of biomass resources, their potential in energy markets, and the most economic utilization of biomass is important in the development of policies that improve energy security and mitigate climate change.

Keywords:

Biomass availability

Renewable energy

Sustainable biofuel

Biomass markets

Energy security

2.1 Introduction


The estimated biomass available from agricultural and forest resources in the United States ranges from 0.8 to 1.3 billion dry tons by 2030, assuming energy crop productivity increases from 2% to 4% annually. This amount is sufficient to displace more than 30% of U.S. petroleum consumption. However, major improvements in yield, sustainability, harvesting, collection, and suitability for conversion to bioenergy and bioproducts are needed to fulfill the potential of biomass as a replacement for petroleum-based energy. This goal will require an integrated and interdisciplinary approach combining aspects of biochemistry, molecular biology, biotechnology, bioprocess engineering, and disciplines related to crop production and land use.

2.1.1 Role of Biomass


Worldwide concern about energy security, energy cost, and the environmental impact of expanding energy use has accelerated the development of renewable energy sources and of measures to reduce energy demand. Increased interest in the production of biofuels and bioproducts from biomass arises from the promise of improving energy security, achieving sustainable economic development, and mitigating climate change by substituting bioenergy for petroleum or fossil-fuel energy [1]. Renewable energy accounted for almost 13% of the world’s primary energy supply in 2008, with biomass contributing more than 10%. Technologies for converting biomass to fuels and other products continue to become increasingly sophisticated. Bioenergy development depends on maximizing the amount of biomass obtained from agriculture and forestry, while prioritizing nature conservation and the protection of soils, water, and biodiversity [2]. The success of bioenergy as a replacement for petroleum energy is determined primarily by cost of raw materials and manufacturing. Raw material supply is a key concern with scale and land use implications important for bioenergy. The idea that energy can be obtained from biomass with a positive energy balance and at a scale large enough to have a substantial impact on sustainability and security objectives is gaining wide acceptance. Production of ethanol and other biofuels from biomass is a major focus. Additional environmental benefits, including greenhouse gas (GHG) mitigation, improved soil fertility, preservation of water quality, and enhanced wildlife habitats, are also potential results [3].

2.1.2 Biomass Availability


The major challenges facing the commercial production of biofuels and bioproducts are sustainable biomass availability and capital-intensive biomass processing facilities [4]. Feedstock availability is crucial for the feasibility and economic viability of every biomass processing operation. The estimated biomass available from agricultural and forest resources in the United States, at a farm gate or forest roadside price of $60 per dry ton, ranges from 0.6 to 1.0 billion tons by 2022 and from 0.8 to 1.3 billion dry tons by 2030, depending on the assumed dedicated energy crop productivity (in this estimate from 1% to 4% increase over current yields). The quantity decreases significantly as the price decreases to $40 per dry ton. This estimated amount is sufficient to displace more than 30% of U.S. petroleum consumption [5]. Biomass feedstocks must provide high energy content, and they must be easy to grow and harvest in large quantities. Bioengineers must also identify varieties of biomass feedstocks that require minimal water, fertilizer, land use, and other inputs. Energy crops are the largest potential source of biomass feedstock, with potential energy crop supplies varying considerably depending on assumed productivity [5]. Targeting marginal or degraded land for growing biomass feedstocks can reduce the change in land use associated with bioenergy expansion and enhance carbon sequestration in soils [6,7]. However, major improvements in yield, sustainability, harvesting, collection, and suitability for conversion to bioenergy and bioproducts are needed to fulfill the potential of biomass to replace petroleum-based energy [4,8]. Given the finite land resources and competing land uses, achieving high fuel yield per unit of land is vital for the sustainable production of large quantities of biomass on a feasible amount of land for industrial-scale production of biofuels and bioproducts. This goal will require an integrated and interdisciplinary approach combining aspects of biochemistry, molecular biology, biotechnology, and disciplines related to crop production and land use [3]. The techniques of genetic engineering are being used to produce the optimum petroleum replacement feedstock as well as to modify biomass so it is easier to process [911]. Transgenic approaches could transform plants to improve growth rates of biomass, particularly trees, more quickly and less expensively than using traditional breeding approaches. As additional transgenic bioenergy crops are generated and tested, different strategies have been developed to move genetically modified organisms through the regulatory process [12,13].

2.1.3 Allocation of Supply


Biomass has many competing uses, including liquid fuels, electricity, hydrogen, and chemicals. Its allocation for fuel, power, and bioproducts depends on the characteristics of the markets for each of these products, their interactions, and the policies affecting these markets [14]. The two main competitors for biomass resources are biopower and biofuels, and the future status of these products depends primarily on the federal and state regulations governing them. The market shares of other end-uses, such as traditional heating, exports, and biobased products, including chemicals and plastics, are not predicted to substantially increase [4]. However, if substantial technological breakthroughs are made in the areas of bioplastics or bioacrylics, biobased products could demand a larger fraction of overall biomass resources in the future. A combination of favorable market conditions appears to be the most effective means for establishing an economically sustainable biofuel supply chain. These conditions include competitive pricing of biofuel relative to petroleum-based fuels, sufficient biofuel producer incentives, strong investment in infrastructure for the distribution and dispensing of biofuels, and widespread use of flexible-fuel vehicles [15]. Biofuels are considered to be important technologies for both developing and industrialized countries for energy security reasons, environmental concerns, foreign exchange savings, and rural development. Biomass is an attractive feedstock for biofuels because it is a renewable resource that can be sustainably developed for the future, it has positive environmental properties, and it has significant economic potential. In the most biomass-intensive scenario, it contributes one-half of the total energy demand in developing countries by 2050 [16].

2.1.4 Overcoming Utilization Issues


The energy content and energy density of biomass vary with the type of biomass and are dictated by plant and cell-wall structure. In general, woody biomass, both softwood and hardwood, has a higher lignin and cellulose content and density than agricultural biomass such as switchgrass, corn stover, and straw. Energy inputs required for waste biomass such as corn...

Erscheint lt. Verlag 19.8.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Elektrotechnik / Energietechnik
ISBN-10 0-444-59504-X / 044459504X
ISBN-13 978-0-444-59504-1 / 9780444595041
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99

von Thomas Bechtold; Tung Pham

eBook Download (2023)
De Gruyter (Verlag)
94,95