Investigations and Applications of Severe Plastic Deformation
Springer (Verlag)
978-0-7923-6281-4 (ISBN)
Preface. Introduction. I: Innovations in Severe Plastic Deformation Processing and Process Modeling. Severe Plastic Deformation of Materials by Equal Channel Angular Extrusion (ECAE); R.E. Goforth, et al. Severe Plastic Deformation of Steels: Structure, Properties and Techniques; S.V. Dobatkin. Application of ECAP - Technology for Producing Nano- and Microcrystalline Materials; V.I. Kopylov. Severe Deformation Based Process for Grain Subdivision and Resulting Microstructures; A.K. Ghosh, W. Huang. Modeling of Continual Flows in Angular Domains; B.V. Koutcheryaev. Synthesis and Characterization of Nanocrystalline Tial Based Alloys; O.N. Senkov, F.H. Froes. Formation of Submicrocrystalline Structure in TiAl and Ti3Al Intermetallics via Hot Working; G. Salishchev, et al. Severe Plastic Deformation Processes; Modeling and Workability; S.L. Semiatin, et al. The Effect of Strain Path on the Rate of Formation of High Angle Grain Boundaries During ECAE; P.B. Prangnell, et al. Thermomechanical Conditions for Submicrocrystalline Structure Formation by Severe Plastic Deformation; F.Z. Utyashev, et al. II: Microstructural Characterization and Modeling of Severe Plastic Deformation Materials. Strengthening Processes of Metals by Severe Plastic Deformation. Analyses with Electron and Synchrotron Radiation; M.J. Zehetbauer. Size Distribution of Grains or Subgrains, Dislocation Density and Dislocation Character by Using the Dislocation Model of Strain Anisotropy in X-Ray Line Profile Analysis; T. Ungár. X Ray-Studies and Computer Simulation of Nanostructured SPD Metals; I.V. Alexandrov. An Analysis of Heterophase Structures of Ti3Al, TiAl, Ni3Al Intermetallics Synthesized by the Method of the SphericalShock Wave Action; B.A. Greenberg, et al. StructuralChanges Induced by Severe Plastic Deformation of Fe- and Co-Based Amorphous Alloys; N. Noskova, et al. Structure of Grains and Internal Stress Fields in Ultrafine Grained NI Produced by Severe Plastic Deformation; N.A. Koneva, et al. Crystal Lattice Distorsions in Ultrafine-Grained Metals Produced by Severe Plastic Deformation; A.N. Tyumentsev, et al. Grain and Subgrain Size-Distribution and Dislocation Densities in Severely Deformed Copper Determined by a New Procedure of X-Ray Line Profile Analysis; T. Ungár, et al. Calculation of Energy Intensity and Temperature of Mechanoactivation Process in Planetary Ball Mill by Computer Simulation; E.V. Shelekhov, et al. III: Microstructure Evolution During Severe Plastic Deformation Processing. Microstructural Evolution During Processing by Severe Plastic Deformation; T.G. Langdon, et al. Characterization of Ultrafine-Grained Structures Produced by Severe Plastic Deformation; Z. Horita, et al. Fragmentation in Large Strain Cold Rolled Aluminium as Observed by Synchrotron X-Ray Bragg Peak Profile Analysis (SXPA), Electron Back Scatter Patterning (EBSP) and Transmission Electron Microscopy (TEM); E. Schafler, et al. Influence of Thermal Treatment and Cyclic Plastic Deformation on the Defect Structure in Ultrafine-Grained Nickel; E. Thiele, et al. Nanostructure State as Nonequilibrium Transition in Grain Boundary Defects in SPD Condition; O.B. Naimark. Texture, Structural Evolution and Mechanical Properties in AA5083 Processed by ECAE; L. Dupuy, et al. A TEM-Based Disclination Model for the Substructure Evolution under Severe Plastic Deformation; M. Seefeldt, et al. Physical Mesomechanics of Ultrafine-Grained Metals; V.E. Panin. Microstructure Evo
Reihe/Serie | NATO Science Partnership Sub-Series: 3 ; 80 |
---|---|
Zusatzinfo | XIX, 394 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Technik ► Maschinenbau | |
ISBN-10 | 0-7923-6281-0 / 0792362810 |
ISBN-13 | 978-0-7923-6281-4 / 9780792362814 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich