Integrated Devices for Quantum Information with Polarization Encoded Qubits (eBook)

(Autor)

eBook Download: PDF
2014 | 2014
XII, 140 Seiten
Springer International Publishing (Verlag)
978-3-319-07103-9 (ISBN)

Lese- und Medienproben

Integrated Devices for Quantum Information with Polarization Encoded Qubits - Linda Sansoni
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Quantum information science has found great experimental success by exploiting single photons. To date, however, the majority of quantum optical experiments use large-scale (bulk) optical elements bolted down to an optical bench, an approach that ultimately limits the complexity and stability of the quantum circuits required for quantum science and technology. The realization of complex optical schemes involving large numbers of elements requires the introduction of waveguide technology to achieve the desired scalability, stability and miniaturization of the device. This thesis reports on surprising findings in the field of integrated devices for quantum information. Here the polarization of the photon is shown to offer a suitable degree of freedom for encoding quantum information in integrated systems. The most important results concern: the quantum interference of polarization entangled photons in an on-chip directional coupler; the realization of a Controlled-NOT (CNOT) gate operating with polarization qubits; the realization of a quantum walk of bosons and fermions in an ordered optical lattice and the quantum simulation of Anderson localization of bosons and fermions simulated by polarization entangled photons in a disordered quantum walk. The findings presented in this thesis represent an important step towards the integration of a complete quantum photonic experiment in a chip.

Linda Sansoni graduated in 2009 in the Quantum Optics Group at Sapienza Università di Roma with a thesis on Orbital Angular Momentum of light, then continued with her PhD research in the same group, focussing on the field of integrated devices for quantum information. She gained her PhD in February 2013 and continued her research on integrated devices as post doc in the same group. She is now well known in this field being co author of various high impact journal publications. In November 2013 she moved to the University of Paderborn in Germany, where she is working on nonlinear integrated optics for quantum information.

Linda Sansoni graduated in 2009 in the Quantum Optics Group at Sapienza Università di Roma with a thesis on Orbital Angular Momentum of light, then continued with her PhD research in the same group, focussing on the field of integrated devices for quantum information. She gained her PhD in February 2013 and continued her research on integrated devices as post doc in the same group. She is now well known in this field being co author of various high impact journal publications. In November 2013 she moved to the University of Paderborn in Germany, where she is working on nonlinear integrated optics for quantum information.

Part I Quantum Information.- Quantum Information with Photonics.- Integrated Waveguide Technology.- Part II Integrated Devices for Quantum Information.- Polarization Dependent and Independent Devices.- Quantum Computation: Integrated Quantum Gates for Polarization.- Encoded Qubits.- Process Characterization.- Part III Quantum Simulation.- Introduction to Quantum Simulation.- Bosonic and Fermionic Quantum Walk.- um Transport in Presence of Disorder.- Conclusion.

Erscheint lt. Verlag 3.6.2014
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XII, 140 p. 48 illus., 29 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Maschinenbau
Schlagworte Anderson localization • Integrated Devices for Quantum Information Processing • Laser Writing • Photon Polarization Qubit • Polarization Encoding • Quantum Information Science and Technology • quantum simulation • Quantum Transport • Quantum Walk on a Chip
ISBN-10 3-319-07103-3 / 3319071033
ISBN-13 978-3-319-07103-9 / 9783319071039
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99