Reactor and Process Design in Sustainable Energy Technology -

Reactor and Process Design in Sustainable Energy Technology (eBook)

Fan Shi (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
290 Seiten
Elsevier Science (Verlag)
978-0-444-59578-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
118,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production.

The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently.


  • Emphasis on reactor engineering in sustainable energy technology
  • Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics
  • Expert accounts of reactor types, processing, and optimization
  • Figures and tables designed to comprehensively present concepts and procedures
    Hundreds of citations drawing on many most recent and previously published works on the subject

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy technology Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics Expert accounts of reactor types, processing, and optimization Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject

Front Cover 1
Reactor and Process Design in Sustainable Energy Technology 4
Copyright 5
Contents 6
Preface 12
Chapter 1: Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and c ... 14
1. Biofuels - basic definitions 15
2. Thermochemical technologies 18
3. Reactor configurations for fast pyrolysis 21
3.1. Bubbling fluidized-bed reactor 21
3.2. Circulating fluidized-bed reactor 22
3.3. Auger reactor 23
3.4. Vacuum reactor 24
3.5. Ablative reactors 25
3.5.1. Vortex (cyclone) reactor 25
3.5.2. Rotating cone 26
3.6. Selection of pyrolysis systems 26
4. Gasification - important concepts and definitions 27
5. Gasification steps 30
6. Applications for the gasification product 32
7. Reactors for gasification 33
7.1. Impurities in the gas 36
8. Summary 36
Further Reading 36
Chapter 2: Bioreactor design for algal growth as a sustainable energy source 40
1. Introduction 40
2. Bioreactor design 42
3. Algal growth in bioreactors 43
3.1. Open pond systems 44
3.2. Photobioreactors 46
3.2.1. Tubular bioreactor 46
3.2.2. Bubble-column bioreactor 47
3.2.3. Airlift bioreactor 47
3.2.4. Flat-panel bioreactor 52
3.3. Comparison 53
4. Modeling of algal growth 55
4.1. Theoretical maximum production of biodiesel from algae 55
4.2. Modeling algae growth in an open raceway 57
4.3. Modeling algal growth in a PBR 61
4.4. Combining algal growth with CO2 fixation 67
5. Conclusions 70
Acknowledgments 71
References 71
Chapter 3: Design of flow battery 74
1. Overview of redox flow battery 75
1.1. Introduction 75
1.2. The characteristics of the RFB 76
1.3. Evaluation of the RFB 78
1.4. Types of redox flow batteries 79
2. True redox flow batteries 80
2.1. Bromine/polysulphide RFB 80
2.2. Vanadium redox flow batteries 82
2.2.1. The fundamentals of an all-vanadium RFB 82
2.2.2. The key components of all-VRFBs 83
2.2.3. The commercial applications of all-VRFBs 85
2.2.4. The challenges for all-VRFBs 87
2.3. Other types of typical redox flow batteries 87
3. Hybrid redox flow batteries 90
3.1. Zinc-bromine RFB 90
3.2. Other hybrid RFB systems based on the Zn2+/Zn redox couple 93
3.3. Undivided membrane-free redox flow batteries 94
3.4. Semisolid lithium rechargeable flow battery 97
4. Design considerations of redox flow batteries 98
4.1. The configuration of redox flow batteries 98
4.2. Electrode research 101
4.3. Membrane and separator 103
4.4. Modelling of the RFB 104
5. Summary and perspectives 105
References 106
Chapter 4: Design and optimization principles of biogas reactors in large scale applications 112
1. Introduction 113
2. Simple structured biogas reactors 113
2.1. Fixed dome digesters 114
2.2. Floating drum digesters 115
2.3. Improvement of simple structured biogas reactors 115
3. Enhanced bioreactors for large-scale applications 116
3.1. Energy transfer 116
3.1.1. Energy requirement of biogas reactor 117
3.1.1.1. Model description 118
3.1.1.2. Heat loss due to mass flow 118
3.1.1.3. Heat loss through the digesters 119
3.1.1.4. Examples 120
3.1.2. Heating methods 121
3.1.2.1. Inside heating methods 121
3.1.2.2. External heating methods 123
3.1.3. Waste heat recovery 127
3.1.3.1. Why 127
3.1.3.2. How 127
3.2. Stirring and mixing in biogas reactors 129
3.2.1. Requirement 129
3.2.2. Energy consumption 129
3.2.3. Mechanical stirring 130
3.2.4. Hydromechanical mixing 132
3.2.4.1. Airlifting 133
3.2.4.2. Hydraulic mixing 136
3.2.4.3. Fluidized bed 136
4. Research progress in lab 138
4.1. Immobilization 138
4.2. In-situ methane enrichment 140
4.3. Reaction pathway control 140
5. Conclusion 142
Acknowledgments 143
References 143
Chapter 5: Pd-Alloy membranes for hydrogen separation 148
1. Background 149
1.1. Hydrogen separation in advanced coal conversion processes 149
1.2. Options for hydrogen separation 149
2. The chemistry and physics of separation by dense metal membranes 150
2.1. The solution-diffusion mechanism 150
2.2. Definition of selectivity 151
2.3. Experimental characterization of permeability 152
2.3.1. Preparing the membrane sample 152
2.3.2. The permeation experiment 152
2.3.3. Membrane characterization 153
2.4. First-principles calculation of permeability 154
3. The permeability of single-component materials 154
3.1. Pd membranes 155
3.1.1. Structural/mechanical properties 155
3.1.2. Response to non-H2 components 156
4. The roles of minor alloy component(s) 158
4.1. Structure and mechanical properties 158
4.2. Permeability 159
4.2.1. Binary Pd alloys 159
4.2.2. Ternary Pd alloys 161
4.3. Control of response to minor components 161
4.3.1. PdCu 161
4.3.2. PdAu 164
4.4. Ternary Pd alloys 165
5. Design and implementation of dense metal membrane systems 166
5.1. Strategies for preparing and stabilizing thin metal layers 166
5.1.1. Free-standing foils 166
5.1.2. Thin films on porous substrates 166
5.1.3. Composite membranes 166
5.2. Device (module) design 167
5.3. Integrated reactor designs: membrane reactors 168
5.4. Process optimization/configuration 169
6. Outlook 169
References 171
Chapter 6: Processes and simulations for solvent-based CO2 capture and syngas cleanup 176
1. Introduction 177
2. Methyldiethanolamine 179
2.1. Overview 179
2.2. Tutorial: example of using MDEA for H2S removal in ProMax 181
2.2.1. Defining the ProMax simulation and selecting components 183
2.2.2. Constructing the absorber section 183
2.2.3. Constructing the stripper section 185
2.2.4. Adding stream recycles 187
2.3. Tutorial: example of using MDEA for CO2 removal in Aspen Plus with the Electrolyte-NRTL package 188
2.3.1. Setting up the physical properties model 190
2.3.2. Absorber modelling, tips, and tricks 192
2.3.3. Modelling the stripper and heat exchange 194
2.3.4. Modelling the rest of the flowsheet 198
2.3.5. Making changes and advanced techniques 200
2.3.6. Notes about rate-based versus equilibrium-based distillation models 202
2.4. MDEA for simultaneous H2S and CO2 removal 202
3. Piperazine 203
3.1. The influence of pressure 204
3.2. Modelling piperazine in Aspen Plus 205
3.3. Modelling piperazine in Aspen HYSYS 205
3.4. Modelling piperazine in ProMax 205
4. Monoethanolamine 206
4.1. Simulating MEA CO2 capture systems in Aspen Plus using the Amines Package 207
4.2. Advanced simulation techniques 211
4.3. MEA for CO2 capture from pulverized coal power plants 212
4.4. MEA for H2S removal 212
4.5. MEA for CO2 capture for hydrogen generation applications 213
4.6. Other software 214
5. DGA, morpholine, and other amines 214
5.1. Simulating CO2 capture with DGA 215
5.2. Other amines 217
6. Selexol 217
6.1. Tutorial: example of modelling CO2 capture using Aspen HYSYS 219
6.1.1. Setting up the physical properties 220
6.1.2. Setting up the CO2 stripping section 220
6.1.3. Stream compression 222
6.1.4. Setting up the absorber and integrating the flowsheet 223
6.1.5. Closing the loop and advanced simulation tools 224
6.1.6. Modelling combined CO2 and H2S capture in Aspen HYSYS 228
6.2. Modelling Selexol processes with the PC-SAFT package (HYSYS, Aspen Plus) 228
7. Rectisol 230
7.1. Tutorial: example Rectisol process for CO2 and H2S removal using Invensys Pro/II 231
7.1.1. Specifying the physical properties 232
7.1.2. Creating the water removal section 234
7.1.3. Absorber section 235
7.1.4. Stripper section 236
7.1.5. Completing the flowsheet and adding recycle 236
7.2. Example Rectisol process for CO2 removal only in Aspen HYSYS 239
7.3. Notes for modelling in Aspen Plus 239
8. Conclusions 239
References 242
Chapter 7: Chemical-looping processes for fuel-flexible combustion and fuel production 246
1. Introduction 246
2. Fuel composition and fuel flexibility 249
2.1. Fuel contaminants 249
2.1.1. Sulfur 249
2.1.2. Light hydrocarbons 252
2.2. Fuel flexibility 253
2.2.1. Liquid fuels 253
2.2.2. Solid fuels 254
2.3. Chemical-looping oxygen uncoupling 260
3. Chemical-looping reforming 265
3.1. Chemical-looping steam reforming 268
3.2. Chemical-looping dry reforming 272
3.3. Chemical-looping mixed reforming 274
3.4. Chemical-looping partial oxidation 276
4. Summary and outlook 284
Acknowledgment 286
References 286
Index 294

Chapter 2

Bioreactor design for algal growth as a sustainable energy source


Yuhua Duan*; Fan Shi*,    * National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania, USA
† URS Corporation, South Park, Pennsylvania, USA

Abstract


A bioreactor is one of the most important reactors that involve organisms or biochemically active substances derived from such organisms. In this chapter, after briefly introducing the basic components of a bioreactor, we focus on applications of bioreactors in algal growth for biodiesel production. Microalgae can be cultivated in open-system (such as a raceway pond) or closed-system photobioreactors (PBRs) (such as tubular, bubble-column, airlift, flat-panel, etc.). The comparison results indicate that both systems have advantages and disadvantages and should not be viewed as competing technologies. Among these PBRs, the bubble-column design does not perform as well as do tubular and airlift PBRs. Computational simulations provide useful information for designing algal growth technologies. The theoretical maximum algal production is 45,600 gallon/acre/year, while the current practical outcome is only 4350–5700 gallon/acre/year. This means that, by simulation, it is possible to optimize all the factors to increase the practical production toward theoretical maxima. Other effects (such as light, temperature, nutrients, wastewater and CO2 usage, algal species, etc.) are also discussed here.

Keywords

Bioreactor

Algal growth

Raceway pond

Photobioreactor

Computational simulation

Biofuel

Chapter Contents

Acknowledgment


The authors thank C. Wamsley (internal technical writer) for proofreading the manuscript.

1 Introduction


As energy demand increases, national energy security and availability, affordability, and environmental friendliness of energy resources are major drivers for developing renewable energy sources. This rising energy demand, along with depletion of fossil fuel sources and increasing concerns about climate change, makes the use of clean and renewable energy sources relatively paramount to economic development, environmental protection, quality of life, global stability, and other factors. Many energy production processes are being investigated to determine the most effective ways to both extract and develop unconventional energy sources. Biofuels could be a long-term replacement for fossil fuels, especially because they emit fewer greenhouse gases (GHGs) and could increase U.S. energy security because of their easy acquisition. The United States’ Energy Independence and Security Act (EISA) of 2007 requires production of 36 billion gal./year (bgy) of renewable transportation fuels by 2022 [1]. The U.S. Environmental Protection Agency (EPA) projects that these renewable fuels could come from starch-based ethanol and advanced biofuels, including cellulosic ethanol, biobutanol, and biomass-based hydrocarbon fuels (renewable gasoline, diesel, jet fuel) [24]. Trends show that the U.S. biofuel production for transportation should continually increase over the next few decades [5].

Today’s first-generation biofuels, including bioalcohols from corn and biodiesel from vegetable oil and animal fat, are largely made from feedstocks containing sugar, starch, vegetable oil, or animal fats that have traditionally been used as food. These feedstocks greatly compete with food crops for land and water in most regions of the world, and they also threaten the local biological diversity. Concerns over conflicts with food supplies and land protection, as well as disputes over GHG reductions, always arise when first generation biofuels become commercially available. These concerns have increased worldwide interest in developing second generation biofuels from non-food feedstocks, such as cellulose and waste biomass (stalks of wheat and corn, and wood), which potentially offer the greatest opportunities in the longer term [57].

Among renewable biomass resources for advanced biofuels, microalgae continues to attract attention because of its fast growth rate, high oil yield (1000–6500 gallon/acre/year vs. soybean 48 gallon/acre/year), the use of non-arable land for algae cultivation, growth in a variety of water sources, and the benefits associated with large-scale CO2 mitigation [4,811]. Furthermore, microalgae-based biofuels do not compete with food crop production, unlike conventional biofuels, that typically use fertile land and edible oils in their production cycle. Researchers supported by the U.S. Department of Energy are studying the potential of microalgae for producing biodiesel with CO2 captured from point sources, including coal-fired power plants [2,1215]. Microalgae are able to produce more than 50% dry weight of biocrude oil with the potential to yield 100 times higher oil production than conventional crops [16]. The compositions of typical microalgal oils include higher molecular weight species ranging from C14 to C26 and often contain carboxylic acid. Overall, the bio-oil has a chemical nature and energy density comparable to that of petroleum-based diesel, making algae oil-based biofuels a target for diesel replacement [17]. Microalgae-based oil also typically contains from 20% to 50% free fatty acids [5,18,19].

For over 40 years, microalgae has been commercially cultivated; however, high-value strains such as Spirulina, used for health food and other supplements, are among the few to see commercial viability. Interest in cultivating microalgae for renewable fuels production has grown in recent years, and although the technical feasibility of producing large amounts of biofuels from algae is promising, the high cost of production compared to the relatively low price of fuels remains an obstacle. Specific light, CO2, temperature, and pH for optimal growth are required, in addition to other specific needs, depending on the species and the particular resource for which it is grown. Large-scale algae cultivation may be conducted in open ponds or closed photobioreactors (PBRs), and each presents a unique set of benefits and disadvantages. Closed systems allow for greater control of nutrients, pH, and CO2 balance and reduce the possibility of contamination by native algae strains or other organisms. However, open pond systems are much less expensive to build and maintain, which is an important consideration for fuels or similar low-value products. Both approaches remain active areas of research in both academia and industry.

Producing renewable energy sources, such as liquid transportation fuels, with low carbon emissions reduces global CO2 emissions. When biomass-derived biofuels are oxidized, CO2 is released, just as it is from fossil fuels; however, if new biomass is grown, then the CO2 can be recycled through photosynthesis and the process repeated. Producing 100 kg of algal biomass fixes approximately 183 kg of CO2. If no externally produced energy is used for biomass cultivation, harvesting, and conversion, then the full biomass fuel cycle would have no net emission of CO2, resulting in a carbon-neutral process [2,20].

In this chapter that focuses on algal growth, we shall look into how bioreactors are designed to meet cost, biological growth, and engineering needs.

2 Bioreactor design


In general, a bioreactor refers to any manufactured or engineered device or system that supports a biologically active environment [21]. It can be a vessel in which a chemical process that involves...

Erscheint lt. Verlag 28.7.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Architektur
Technik Elektrotechnik / Energietechnik
ISBN-10 0-444-59578-3 / 0444595783
ISBN-13 978-0-444-59578-2 / 9780444595782
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 19,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99

von Thomas Bechtold; Tung Pham

eBook Download (2023)
De Gruyter (Verlag)
94,95