Handbook of Thermoplastic Elastomers -  Jiri George Drobny

Handbook of Thermoplastic Elastomers (eBook)

eBook Download: PDF | EPUB
2014 | 2. Auflage
464 Seiten
Elsevier Science (Verlag)
978-0-323-22168-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
265,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Handbook of Thermoplastic Elastomers, Second Edition presents a comprehensive working knowledge of thermoplastic elastomers (TPEs), providing an essential introduction for those learning the basics, but also detailed engineering data and best practice guidance for those already involved in polymerization, processing, and part manufacture.

TPEs use short, cost-effective production cycles, with reduced energy consumption compared to other polymers, and are used in a range of industries including automotive, medical, construction and many more. This handbook provides all the practical information engineers need to successfully utilize this material group in their products, as well as the required knowledge to thoroughly ground themselves in the fundamental chemistry of TPEs. The data tables included in this book assist engineers and scientists in both selecting and processing the materials for a given product or application.

In the second edition of this handbook, all chapters have been reviewed and updated. New polymers and applications have been added - particularly in the growing automotive and medical fields - and changes in chemistry and processing technology are covered.


  • Provides essential knowledge of the chemistry, processing, properties, and applications for both new and established technical professionals in any industry utilizing TPEs
  • Datasheets provide 'at-a-glance' processing and technical information for a wide range of commercial TPEs and compounds, saving readers the need to contact suppliers
  • Includes data on additional materials and applications, particularly in automotive and medical industries

Handbook of Thermoplastic Elastomers, Second Edition presents a comprehensive working knowledge of thermoplastic elastomers (TPEs), providing an essential introduction for those learning the basics, but also detailed engineering data and best practice guidance for those already involved in polymerization, processing, and part manufacture. TPEs use short, cost-effective production cycles, with reduced energy consumption compared to other polymers, and are used in a range of industries including automotive, medical, construction and many more. This handbook provides all the practical information engineers need to successfully utilize this material group in their products, as well as the required knowledge to thoroughly ground themselves in the fundamental chemistry of TPEs. The data tables included in this book assist engineers and scientists in both selecting and processing the materials for a given product or application. In the second edition of this handbook, all chapters have been reviewed and updated. New polymers and applications have been added - particularly in the growing automotive and medical fields - and changes in chemistry and processing technology are covered. Provides essential knowledge of the chemistry, processing, properties, and applications for both new and established technical professionals in any industry utilizing TPEs Datasheets provide "e;at-a-glance"e; processing and technical information for a wide range of commercial TPEs and compounds, saving readers the need to contact suppliers Includes data on additional materials and applications, particularly in automotive and medical industries

Front Cover 1
HANDBOOK OF THERMOPLASTIC ELASTOMERS 4
Copyright 5
Dedication 6
Contents 8
Preface to the Second Edition 18
Preface to the First Edition 20
Acknowledgments 22
1 - Introduction 24
1.1 Elasticity and Elastomers 24
1.2 Thermoplastic Elastomers 25
References 33
2 - Brief History of Thermoplastic Elastomers 36
References 37
3 - Additives 40
3.1 Antioxidants 40
3.2 Light Stabilizers 40
3.3 Nucleating Agents 41
3.4 Flame Retardants 42
3.5 Colorants 44
3.6 Antistatic Agents 46
3.7 Slip Agents 47
3.8 Antiblocking Agents 47
3.9 Processing Aids 47
3.10 Fillers and Reinforcements 47
3.11 Plasticizers 50
3.12 Other Additives 51
3.13 Selection of Additives 52
3.14 Health, Hygiene, and Safety 52
References 53
4 - Processing Methods Applicable to Thermoplastic Elastomers 56
4.1 Introduction 56
4.2 Mixing and Blending 64
4.3 Extrusion 78
4.4 Injection Molding 94
4.5 Compression Molding 116
4.6 Transfer Molding 120
4.7 Blow Molding 128
4.8 Rotational Molding 138
4.9 Foaming of Thermoplastics 152
4.10 Thermoforming 156
4.11 Calendering 161
4.12 Secondary Manufacturing Processes 161
4.13 General Processing Technology of Thermoplastic Elastomers 185
4.14 Process Simulation 188
4.15 3D Printing 188
4.16 Product Development and Testing 189
References 190
5 - Styrenic Block Copolymers 198
5.1 Introduction 198
5.2 Polystyrene–Polydiene Block Copolymers 199
5.3 Styrenic Block Copolymers Synthesized by Carbocationic Polymerization 212
5.4 New Commercial Developments 214
References 215
6 - Thermoplastic Elastomers Prepared by Dynamic Vulcanization 218
6.1 Introduction 218
6.2 The Dynamic Vulcanization Process 219
6.3 Properties of Blends Prepared by Dynamic Vulcanization 220
6.4 Processing and Fabrication of Thermoplastic Vulcanizates 224
6.5 New Commercial Developments 228
References 229
7 - Polyolefin-Based Thermoplastic Elastomers 232
7.1 Introduction 232
7.2 Thermoplastic Polyolefin Blends 232
7.3 Morphology 234
7.4 Properties of TPOs 234
7.5 Processing of TPOs 236
7.6 Painting of TPOs 239
7.7 New Commercial Developments 239
References 240
8 - Thermoplastic Elastomers Based on Halogen-Containing Polyolefins 242
8.1 Introduction 242
8.2 Blends of PVC with Nitrile Rubber 242
8.3 Blends of PVC with Other Elastomers 244
8.4 Melt-Processable Rubber 246
8.5 Thermoplastic Fluorocarbon Elastomer 253
8.6 New Commercial Development 254
References 254
9 - Thermoplastic Polyurethane Elastomers 256
9.1 Introduction 256
9.2 Synthesis of TPUs 257
9.3 Morphology 259
9.4 Thermal Transitions 260
9.5 Properties 260
9.6 Processing of TPUs 265
9.7 Blends of TPUs with Other Polymers 271
9.8 Bonding and Welding 272
9.9 Use of Bio-Based Raw Materials in TPUs 272
9.10 New Commercial Development 272
References 273
10 - Thermoplastic Elastomers Based on Polyamides 278
10.1 Introduction 278
10.2 Synthesis 278
10.3 Morphology 280
10.4 Structure–Property Relationships 281
10.5 Physical and Mechanical Properties 282
10.6 Chemical and Solvent Resistance 286
10.7 Electrical Properties 286
10.8 Other Properties 286
10.9 Compounding 287
10.10 Processing 288
10.11 Bonding and Welding 290
10.12 New Commercial Developments 291
References 291
11 - Thermoplastic Polyether Ester Elastomers 294
11.1 Introduction 294
11.2 Synthesis 294
11.3 Morphology 295
11.4 Properties of Commercial COPEs 295
11.5 COPE Blends 300
11.6 Processing 301
References 308
12 - Ionomeric Thermoplastic Elastomers 310
12.1 Introduction 310
12.2 Synthesis 311
12.3 Morphology 311
12.4 Properties and Processing 311
12.5 Applications 313
References 313
13 - Other Thermoplastic Elastomers 314
13.1 Elastomeric Star-Block Copolymers 314
13.2 TPEs Based on Interpenetrating Networks 316
13.3 TPEs Based on Polyacrylates 317
References 318
14 - Thermoplastic Elastomers Based on Recycled Rubber and Plastics 320
14.1 Introduction 320
14.2 EPDM Scrap 320
14.3 NBR Scrap 320
14.4 Recycled Rubber 321
14.5 Waste Latex 321
14.6 Waste Plastics 321
References 321
15 - Applications of Thermoplastic Elastomers 324
15.1 Introduction 324
15.2 Applications for Styrenic Thermoplastic Elastomers 325
15.3 Applications of Thermoplastic Vulcanizates 333
15.4 Applications of Thermoplastic Polyolefins 337
15.5 Applications of Melt-Processable Rubber 339
15.6 Applications of PVC Blends 342
15.7 Application of Thermoplastic Polyurethanes 343
15.8 Application of Thermoplastic Polyether Ester Elastomers 348
15.9 Applications of Polyamide Thermoplastic Elastomers 350
15.10 Applications of Ionomeric Thermoplastic Elastomers 353
15.11 Applications of Other Thermoplastic Elastomers 356
References 357
16 - Recycling of Thermoplastic Elastomers 362
16.1 Introduction 362
16.2 Recycling Methods for Thermoplastic Elastomers 362
References 363
17 - Recent Developments and Trends 364
17.1 Current State 364
17.2 Drivers for the Growth of TPEs 364
17.3 Trends in Technical Development 365
17.4 Other New Developments 367
References 367
Appendix 1: Books and Major Review Articles 370
Books 370
Major Review Reports and Articles, Conferences 370
Recent Conferences 371
Appendix 2: Major Suppliers of Thermoplastic 
372 
Appendix 3: ISO Nomenclature for 
378 
Generic Terms and Definitions 378
Nomenclature System 378
Polyamide TPEs (TPAs) 378
Copolyester TPEs (TPCs) 379
Olefinic TPEs (TPOs) 379
Styrenic TPEs (TPSs) 379
Urethane TPEs (TPUs) 379
Dynamically Vulcanized TPEs (TPVs) 379
Miscellaneous Material (TPZ) 380
Appendix 4: Processing Data Sheets for Commercial 
382 
A4.1 Processing of Styrenic Block Copolymers 382
A4.2 Processing of Polyolefin-based TPE (TPO) 385
A4.3 Processing of Thermoplastic Vulcanizates (TPV) 386
A4.4 Processing of Melt Processable Rubber (MPR) 388
A4.5 Processing of Thermoplastic Polyurethanes (TPU) 390
A4.6 Processing of Copolyester Thermoplastic Elastomers 392
A4.7 Processing of Polyamide Thermoplastic Elastomers (COPA) 392
Appendix 5: Technical Data Sheets for Commercial 
394 
A5.1 SBC Data Sheets 394
A5.2 TPO Data Sheets 402
A5.3 TPV Data Sheets 407
A5.5 TPU Data Sheets 421
A5.6 COPE Data Sheets 427
A5.7 COPA Data Sheets 429
A5.8 Silicone TPE Data Sheets 433
A5.9 Other Specialty TPE Data Sheets 439
Appendix 6: Recent TPE Patents 442
Appendix 7: The 12 Principles of Green Chemistry 
444 
Abbreviations and Acronyms 446
Glossary 448
Index 458

1

Introduction


Abstract


Thermoplastic elastomers are polymeric materials, which exhibit elasticity at ambient temperatures and can be processed as plastics by melt processing techniques. They are essentially two-phase systems. The phase separation is the result of limited compatibility of the two phases involved. When the material is heated above the melting point or melting range of the hard phase, its melt becomes homogeneous and can be shaped into desired shapes and/or products.

Keywords


Advantages and disadvantages of thermoplastic elastomersBlock copolymersClassification and nomenclature of thermoplastic elastomersCurrent demand for thermoplastic elastomersDynamic vulcanizationElasticityElastomersForecast of the growth of demand for thermoplastic elastomersPhase separationPhase structurePhysical thermoreversible cross-linksPolymerizationThermoplastic elastomers

Elasticity and Elastomers


Rubber-like materials consist of relatively long polymeric chains having a high degree of flexibility and mobility, joined into a network structure. The flexibility and mobility allow for a very high deformability. When subjected to external stresses, the long chains may alter their configuration rather rapidly because of the high chain mobility. When the chains are linked into a network structure, the system has solid-like features, where the chains are prevented from flowing relative to each other under external stresses. As a result, a typical rubber may be stretched up to 10 times its original length. On removal of the external forces, it rapidly recovers to its original dimensions, with essentially no residual or nonrecoverable strain.
When ordinary solids, such as crystalline or glassy materials, when subjected to external forces, the distance between two atoms may be altered by only a few angstroms for the deformation to be recoverable. At higher deformations, such materials either flow or fracture. The response of rubber is entirely intramolecular, that is, the externally applied forces are transmitted to the long chains through the linkages at their extremities, change their conformations, and each chain acts as an individual spring in response to the external forces [1].
High-molecular-weight polymers form entanglements by molecular intertwining (see Fig. 1.1(A)), with a spacing (in the bulk state) characteristic of the particular molecular structure. The spacing is expressed by molecular weight between entanglements (Me). Some examples of values of the molecular weight Me for several elastomers are in Table 1.1. Thus, a high-molecular-weight polymeric melt will show transient rubber-like behavior even in the absence of any permanent intermolecular bonds [2]. In a cross-linked elastomer, many of these entanglements are permanently locked in (see Fig. 1.1(B)), and at high enough degree of cross-linking, they may be regarded fully equivalent to cross-links, and as such they contribute to the elastic response of the material.
A network is obtained by linking of polymer chains together, and this linkage may be either chemical or physical. Physical linking can be obtained by [1]:
1. Absorption of chains onto the surface of finely divided particulate fillers
2. Formation of small crystallites
3. Coalescence of ionic centers
4. Coalescence of glassy blocks
These physical cross-links are, in general, not permanent and may disappear on swelling, or increase in temperature. Physical, thermoreversible networks are present in most thermoplastic elastomers (TPEs). Materials of this kind are very attractive technologically since they can be processed as thermoplastics, yet exhibit the behavior of rubber vulcanizates when cooled down to a sufficiently low temperature.

Figure 1.1(A) Molecular entanglements in a high-molecular-weight polymer. (B) Molecular entanglements locked by cross-linking.

Table 1.1

Representative Values of the Average Molecular Weight between Entanglements (Me) for Polymeric Meltsa

Polymer Me
Polyethylene 4000
cis-1,4-Polybutadiene 7000
cis-1,4-Polyisoprene 14,000
Poly(isobutylene) 17,000
Poly(dimethyl siloxane) 29,000
Polystyrene 35,000

a Obtained from viscosity measurements.

Ref. [1].

Thermoplastic Elastomers


In the previous section, the concept of physical cross-links was introduced and a statement was made that materials with thermoreversible cross-links can be processed as thermoplastics (i.e., by melt processing) and that they exhibit elastic behavior similar to that of vulcanized (chemically cross-linked) conventional elastomers. Such materials represent a large group of polymers, called TPEs.

Phase Structure


Most TPEs are essentially phase-separated systems. The only currently known exceptions are Alcryn® (registered trademark of Advanced Polymer Alloys), a single-phase melt-processable rubber (MPR) and materials based on ionomers. Usually, one phase is hard and solid at ambient temperature and the other is an elastomer. Often, the phases are bonded chemically by block or graft polymerization. In other cases a fine dispersion of the phases is apparently sufficient [3]. The hard phase gives these TPEs their strength and represents the physical cross-links. Without it the elastomer phase would be free to flow under stress, and the polymer would be practically unusable. On the other hand, the elastomer phase provides flexibility and elasticity to the system. When the hard phase is melted or dissolved in a solvent, the material can flow and be processed by usual respective processing methods. Upon cooling or evaporation of the solvent, the hard phase solidifies and the material regains its strength and elasticity.
The individual polymers constituting the respective phases retain most of their characteristics so that each phase exhibits its specific glass transition temperature (Tg) or crystalline melting temperature (Tm). These two temperatures determine the points at which the particular elastomer goes through transitions in its physical properties. An example of this is in Fig. 1.2, which represents the measurement of flexural modulus over a wide range of temperatures. There are three distinct regions:
1. At very low temperatures, i.e., below the glass transition of the elastomeric phase, both phases are hard, so the material is stiff and brittle.
2. Above the Tg of the elastomeric phase the material softens and is elastic, resembling a conventional vulcanized rubber.
3. As the temperature increases, the modulus stays relatively constant (a region referred to as “rubbery plateau”) until the point where the hard phase softens or melts. At this point the material becomes a viscous fluid.

Figure 1.2Stiffness of typical thermoplastic elastomers in dependence on temperature.Courtesy: Hanser Publishers

Table 1.2

Glass Transition and Crystalline Melt Temperatures of Major TPEs

Styrenic block copolymers
S–B–S ?90 95 (Tg)
S–I–S ?60 95 (Tg)
S–EB–S ?55 95 (Tg) and 165 (Tm)a
Multiblock copolymers
Polyurethane elastomers ?40 to ?60 190 (Tm)
Polyester elastomers ?40 185 to 220 (Tm)
Polyamide elastomers ?40 to ?60 220 to 275 (Tm)
Polyethylene—poly(?-olefin) ?50 70 (Tm)
Poly(etherimide)—polysiloxane ?60 225 (Tg)
Hard polymer–elastomer combinations
Polypropylene—hydrocarbon rubberb ?60 165 (Tm)
Polypropylene—nitrile rubber ?40 165 (Tm)
PVC—(nitrile...

Erscheint lt. Verlag 30.5.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Bauwesen
Technik Maschinenbau
Wirtschaft
ISBN-10 0-323-22168-8 / 0323221688
ISBN-13 978-0-323-22168-9 / 9780323221689
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 56,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 38,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99