Science of Synthesis Knowledge Updates 2012 Vol. 2 (eBook)

eBook Download: EPUB
2014 | 1. Auflage
552 Seiten
Thieme (Verlag)
978-3-13-178831-3 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2012 Vol. 2 -
Systemvoraussetzungen
2.799,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Science of Synthesis is a reference work for preparative methods in synthetic chemistry. Its product-based classification system enables chemists to easily find solutions to their synthetic problems.

Key Features:

  • Critical selection of reliable synthetic methods, saving the researcher the time required to find procedures in the primary literature.
  • Expertise provided by leading chemists.
  • Detailed experimental procedures.
  • The information is highly organized in a logical format to allow easy access to the relevant information.

Science of Synthesis: Knowledge Updates 2012/2 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 18
Table of Contents 20
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 42
4.4 Product Class 4: Silicon Compounds 42
4.4.25.11 Acylsilanes 42
4.4.25.11.1 Synthesis of Acylsilanes 42
4.4.25.11.1.1 Method 1: Synthesis of Simple Acylsilanes 42
4.4.25.11.1.1.1 Variation 1: Hydrolysis of Acetals 42
4.4.25.11.1.1.2 Variation 2: Oxidation of Organocuprates 44
4.4.25.11.1.1.3 Variation 3: Nucleophilic Substitution of Morpholine Amides 48
4.4.25.11.1.1.4 Variation 4: Additional Synthetic Methods 49
4.4.25.11.1.2 Method 2: Synthesis of Bis(acylsilanes) 51
4.4.25.11.1.3 Method 3: Synthesis of a-Oxo Acylsilanes 54
4.4.25.11.1.4 Method 4: Synthesis of a,ß-Unsaturated Acylsilanes 56
4.4.25.11.1.5 Method 5: Synthesis of a-Amino Acylsilanes 57
4.4.25.11.2 Applications of Acylsilanes 59
4.4.25.11.2.1 Method 1: Applications of Simple Acylsilanes 59
4.4.25.11.2.1.1 Variation 1: Nucleophilic Addition 59
4.4.25.11.2.1.2 Variation 2: Nucleophilic Addition with Brook Rearrangement 68
4.4.25.11.2.1.3 Variation 3: Acylsilanes as Acyl Anion Precursors 81
4.4.25.11.2.1.4 Variation 4: Enolate and Enol Ether Reactions 94
4.4.25.11.2.1.5 Variation 5: Photochemistry 95
4.4.25.11.2.1.6 Variation 6: Miscellaneous Applications 99
4.4.25.11.2.2 Method 2: Applications of Bis(acylsilanes) 103
4.4.25.11.2.3 Method 3: Applications of a-Oxo Acylsilanes 106
4.4.25.11.2.4 Method 4: Applications of a,ß-Unsaturated Acylsilanes 117
Volume 8: Compounds of Group 1 (Li … Cs) 126
8.1 Product Class 1: Lithium Compounds 126
8.1.34 Asymmetric Lithiation 126
8.1.34.1 Method 1: Deprotonation in a Position a to a Heteroatom 128
8.1.34.1.1 Variation 1: Enantioselective Deprotonation of Carbamates and Their Analogues 128
8.1.34.1.2 Variation 2: Enantioselective Deprotonation of Phosphorylated Derivatives 134
8.1.34.1.3 Variation 3: Enantioselective Deprotonation of Ureas 138
8.1.34.1.4 Variation 4: Enantioselective Deprotonation of Phosphoramidates 140
8.1.34.1.5 Variation 5: Enantioselective Deprotonation Followed by Transmetalation 141
8.1.34.1.6 Variation 6: Enantioselective Deprotonation Followed by Cyclization 147
8.1.34.1.7 Variation 7: Enantioselective Deprotonation Followed by Wittig Rearrangement 150
8.1.34.1.8 Variation 8: Diastereoselective Deprotonation of Carbamates 155
8.1.34.1.9 Variation 9: Diastereoselective and Enantioselective Deprotonations of Epoxides or Aziridines 159
8.1.34.1.10 Variation 10: Catalytic Enantioselective Deprotonation 161
8.1.34.2 Method 2: Deprotonation in a Position Lacking an a-Heteroatom 166
8.1.34.2.1 Variation 1: Diastereoselective Deprotonation in a Benzylic Position 166
8.1.34.2.2 Variation 2: Enantioselective Deprotonation in a Benzylic Position 167
8.1.34.2.3 Variation 3: Diastereoselective Deprotonation of Metallocene Derivatives 169
8.1.34.2.4 Variation 4: Enantioselective Deprotonation of Metallocene Derivatives 171
8.1.34.3 Method 3: Tin–Lithium Exchange 173
8.1.34.4 Method 4: Reductive Lithiation 176
8.1.34.5 Method 5: Carbometalation 177
8.1.34.5.1 Variation 1: Enantioselective Intermolecular Carbolithiation 177
8.1.34.5.2 Variation 2: Enantioselective and Diastereoselective Intramolecular Carbolithiation 180
Volume 13: Five-Membered Hetarenes with Three or More Heteroatoms 190
13.32 Product Class 32: 1,2,3-Trithioles, Their Benzo Derivatives, and Selenium and Tellurium Analogues 190
13.32.1 Product Subclass 1: 1,2,3-Trithioles 190
13.32.1.1 Synthesis by Ring-Closure Reactions 191
13.32.1.1.1 By Formation of Two S--S Bonds 191
13.32.1.1.1.1 Method 1: Synthesis from Metal Enedithiolates with Thionyl Chloride 191
13.32.1.1.2 By Formation of Two C--S Bonds 191
13.32.1.1.2.1 Method 1: Synthesis from Alkynes with Sulfur 191
13.32.1.2 Synthesis by Ring Transformation 192
13.32.1.2.1 Method 1: Formal Germanium/Sulfur Exchange of a 1,3,2-Dithiagermole with Thionyl Chloride 192
13.32.1.2.2 Method 2: Formal Ring Expansion with the Insertion of an Extra Sulfur Atom 193
13.32.2 Product Subclass 2: 1,2,3-Benzotrithioles and Other Ring-Fused Analogues 194
13.32.2.1 Synthesis by Ring-Closure Reactions 195
13.32.2.1.1 By Formation of Two S--S Bonds and One C--C Bond 195
13.32.2.1.1.1 Method 1: Electrochemical Reduction of Carbon Disulfide 195
13.32.2.1.2 By Formation of Two S--S Bonds 196
13.32.2.1.2.1 Method 1: Synthesis from Arene-1,2-dithiols 196
13.32.2.1.2.1.1 Variation 1: Reactions with Sulfur Dichloride 196
13.32.2.1.2.1.2 Variation 2: Reactions with Thionyl Chloride 196
13.32.2.1.2.1.3 Variation 3: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid 197
13.32.2.1.2.2 Method 2: Synthesis from Metal Enedithiolates with Sulfur Dichloride 198
13.32.2.1.2.2.1 Variation 1: Reactions with Lithium or Sodium Enedithiolates 198
13.32.2.1.2.2.2 Variation 2: Reactions with Zinc Enedithiolates 199
13.32.2.1.3 By Formation of Two C--S Bonds 200
13.32.2.1.3.1 Method 1: Synthesis from 1,2-Dibromoarenes with Sulfur 200
13.32.2.1.3.1.1 Variation 1: Reactions in Liquid Ammonia 200
13.32.2.1.3.1.2 Variation 2: Reaction in Diazabicycloundecene 201
13.32.2.2 Synthesis by Ring Transformation 201
13.32.2.2.1 Method 1: Synthesis from 1,3,2-Dithiametalloles 201
13.32.2.2.1.1 Variation 1: Reactions of 1,3,2-Benzodithiatitanoles with Sulfur Dichloride 202
13.32.2.2.1.2 Variation 2: Reactions of 1,3,2-Benzodithiastannoles with Sulfur Dichloride 202
13.32.2.2.1.3 Variation 3: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride 203
13.32.2.2.1.4 Variation 4: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride, Sodium Iodide, and Perchloric Acid 204
13.32.2.2.1.5 Variation 5: Reactions of 1,3,2-Benzodithiastannoles with Thionyl Chloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide 206
13.32.2.2.2 Method 2: Synthesis from 1,2,3-Benzochalcogenadiazoles with Sulfur 207
13.32.2.2.2.1 Variation 1: Reactions of 1,2,3-Benzothiadiazoles 207
13.32.2.2.2.2 Variation 2: Reactions with 1,2,3-Benzoselenadiazoles 207
13.32.2.2.3 Method 3: Synthesis from 1,3-Benzodithiol-2-ones 208
13.32.2.2.3.1 Variation 1: Reactions with Sodium Hydrogen Sulfide 208
13.32.2.2.3.2 Variation 2: Reactions with an Alkyllithium and Sulfur Dichloride 209
13.32.2.2.3.3 Variation 3: Reactions with a Sodium Alkoxide and Sulfur Dichloride 210
13.32.2.2.4 Method 4: Synthesis from 1,3-Benzodithiole-2-thiones 210
13.32.2.2.5 Method 5: Ring Contraction 211
13.32.2.2.5.1 Variation 1: Synthesis from 1,3,5,2,4-Benzotrithiadiazepines by Thermolysis 211
13.32.2.2.5.2 Variation 2: Synthesis from Benzopentathiepins 212
13.32.2.3 Synthesis by Substituent Modification 213
13.32.2.3.1 One-Electron Oxidation 213
13.32.2.3.1.1 Method 1: Synthesis from 1,2,3-Benzotrithioles with Nitrosonium Hexafluorophosphate To Give Radical Cationic Salts 213
13.32.2.3.2 Addition Reactions 214
13.32.2.3.2.1 Method 1: Synthesis from 1,2,3-Benzotrithioles by Oxidation 214
13.32.2.3.3 Rearrangement of Substituents 215
13.32.2.3.3.1 Method 1: Synthesis from 1,2,3-Benzotrithiole 2-Oxides by Photochemical Rearrangement 215
13.32.3 Product Subclass 3: 1,2,3-Benzodithiaselenoles 216
13.32.3.1 Synthesis by Ring-Closure Reactions 217
13.32.3.1.1 By Formation of One S--S and One S--Se Bond 217
13.32.3.1.1.1 Method 1: Synthesis from 2-(Chlorosulfonyl)benzeneselenenyl Bromide and Thioacetamide 217
13.32.3.2 Synthesis by Ring Transformation 217
13.32.3.2.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles 217
13.32.3.2.1.1 Variation 1: Reactions with Sulfur in Liquid Ammonia 217
13.32.3.2.1.2 Variation 2: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid 218
13.32.4 Product Subclass 4: 1,3,2-Benzodithiaselenoles 219
13.32.4.1 Synthesis by Ring-Closure Reactions 219
13.32.4.1.1 By Formation of Two S--Se Bonds 219
13.32.4.1.1.1 Method 1: Reactions of Arene-1,2-dithiols with Selenium Dioxide 219
13.32.4.2 Synthesis by Ring Transformation 220
13.32.4.2.1 Method 1: Reactions of 1,3,2-Benzodithiastannoles with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide 220
13.32.5 Product Subclass 5: 1,2,3-Benzothiadiselenoles 221
13.32.5.1 Synthesis by Ring Transformation 221
13.32.5.1.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide 221
13.32.5.1.2 Method 2: Ring Contraction of Dibenzo-1,2,5,6- and 1,5,2,6-Dithiadiselenocins by Photolysis 222
13.32.6 Product Subclass 6: 2,1,3-Benzothiadiselenoles 222
13.32.6.1 Synthesis by Ring Transformation 222
13.32.6.1.1 Method 1: Synthesis from 1,3,2-Benzodiselenastannoles 222
13.32.6.1.1.1 Variation 1: Reactions with Sulfur in Liquid Ammonia 222
13.32.6.1.1.2 Variation 2: Reactions with Thionyl Chloride, Sodium Iodide, and Perchloric Acid 223
13.32.6.1.2 Method 2: Synthesis from 1,2,3-Benzotriselenoles with Sulfur 224
13.32.7 Product Subclass 7: 1,2,3-Benzotriselenoles 224
13.32.7.1 Synthesis by Ring-Closure Reactions 224
13.32.7.1.1 By Formation of Two Se--Se Bonds 224
13.32.7.1.1.1 Method 1: Synthesis from Dilithium Arene-1,2-diselenolates with Selenium Tetrachloride 224
13.32.7.1.1.2 Method 2: Synthesis from Benzene-1,2-diselenenyl Dichloride with Selenium 225
13.32.7.1.2 By Formation of Two Se--C Bonds 225
13.32.7.1.2.1 Method 1: Synthesis from 1,2-Dibromoarenes with Selenium 225
13.32.7.1.2.2 Method 2: Reactions of Tribenzo-1,4,7-trimercuronins with Selenium 226
13.32.7.2 Synthesis by Ring Transformation 227
13.32.7.2.1 Method 1: Synthesis from 1,3,2-Benzodiselenastannoles 227
13.32.7.2.1.1 Variation 1: Reactions with Selenium Oxychloride, Trimethylsilyl Trifluoromethanesulfonate, and Samarium(II) Iodide 227
13.32.7.2.1.2 Variation 2: Reaction with Selenium Tetrachloride 228
13.32.7.2.2 Method 2: Reactions of 1,2,3-Benzoselenadiazoles with Selenium 228
13.32.7.2.3 Method 3: By Ring Contraction 228
13.32.7.2.3.1 Variation 1: Synthesis from Dibenzo-1,2,5,6-tetraselenocins by Photolysis 228
13.32.7.2.3.2 Variation 2: Synthesis from Dibenzo-1,2,5,6-tetraselenocin with Diselenium Dichloride 229
13.32.7.3 Synthesis by Substituent Modification 229
13.32.7.3.1 One-Electron Oxidation 229
13.32.7.3.1.1 Method 1: Synthesis from 1,2,3-Benzotriselenoles with Nitrosonium Hexafluorophosphate To Give Radical Cationic Salts 229
13.32.8 Product Subclass 8: 1,2,3-Benzodithiatelluroles 230
13.32.8.1 Synthesis by Ring Transformation 230
13.32.8.1.1 Method 1: Synthesis from 1,3,2-Benzothiatelluratitanoles with Sulfur Dichloride 230
13.32.9 Product Subclass 9: 1,3,2-Dithiatelluroles and 1,3,2-Benzodithiatelluroles 231
13.32.9.1 Synthesis by Ring-Closure Reactions 231
13.32.9.1.1 By Formation of Two S--Te Bonds 231
13.32.9.1.1.1 Method 1: Synthesis from Arene-1,2-dithiols with Tellurium Tetrachloride 231
13.32.9.1.1.2 Method 2: Synthesis from Metal Enedithiolates 232
13.32.9.1.1.2.1 Variation 1: Reactions with Tellurium Tetrahalides 232
13.32.9.1.1.2.2 Variation 2: Reactions with Sodium Tellurapentathionate 232
13.32.9.2 Synthesis by Ring Transformation 233
13.32.9.2.1 Method 1: Synthesis from 1,3,2-Benzodithiastannoles with Tellurium Tetrachloride 233
13.32.10 Product Subclass 10: 1,2,3-Benzothiaselenatelluroles 234
13.32.10.1 Synthesis by Ring Transformation 234
13.32.10.1.1 Method 1: Synthesis from 1,3,2-Benzothiatelluratitanoles with Selenium Oxychloride 234
13.32.11 Product Subclass 11: 1,3,2-Benzothiaselenatelluroles 235
13.32.11.1 Synthesis by Ring Transformation 235
13.32.11.1.1 Method 1: Synthesis from 1,3,2-Benzothiaselenastannoles with Tellurium Tetrachloride 235
13.32.12 Product Subclass 12: 2,1,3-Benzothiaselenatelluroles 235
13.32.12.1 Synthesis by Ring Transformation 235
13.32.12.1.1 Method 1: Synthesis from a 1,3,2-Benzoselenatelluratitanole with Sulfur Dichloride 235
13.32.13 Product Subclass 13: 1,2,3-Benzodiselenatelluroles 236
13.32.13.1 Synthesis by Ring Transformation 236
13.32.13.1.1 Method 1: Synthesis from 1,3,2-Benzoselenatelluratitanoles with Selenium Oxychloride 236
13.32.14 Product Subclass 14: 1,3,2-Benzodiselenatelluroles 236
13.33 Product Class 33: 1,2,4-Triazolium Salts 240
13.33.1 Synthesis by Ring-Closure Reactions 241
13.33.1.1 By Formation of Two N--C Bonds 241
13.33.1.1.1 Formation of the N2--C3 and N4--C5 Bonds 241
13.33.1.1.1.1 Method 1: Reaction of an Imidoyl Chloride with an N-Formylhydrazine 241
13.33.1.1.2 Formation of the N1--C5 and N4--C5 Bonds 242
13.33.1.1.2.1 Method 1: Reaction of an a-Aminohydrazone with a Trialkyl Orthoformate 242
13.33.1.1.2.1.1 Variation 1: Reaction Using a One-Pot Protocol 242
13.33.1.1.2.1.2 Variation 2: Reaction Using an Electron-Deficient Arylhydrazine 243
13.33.1.1.2.1.3 Variation 3: Synthesis of N-Mesityl-Substituted Triazolium Salts 244
13.33.1.1.2.1.4 Variation 4: Reaction Using Dimethyl Sulfate as the Amide-Activating Agent 246
13.33.1.1.2.1.5 Variation 5: Synthesis of 2-Alkyl-[1,2,4]triazolo[4,3-a]pyridinium Salts 247
13.33.1.1.2.1.6 Variation 6: Synthesis of 2-Aryl-[1,2,4]triazolo[4,3-a]pyridinium Salts 248
13.33.2 Synthesis by Ring Transformation 248
13.33.2.1 Formal Exchange of Ring Members with Retention of Ring Size 248
13.33.2.1.1 Method 1: Synthesis from 1,3,4-Oxadiazolium Salts 248
13.33.2.1.2 Method 2: Synthesis from 1,3,4-Thiadiazolium Salts 250
13.33.3 Synthesis by Substituent Modification 251
13.33.3.1 Addition Reactions 251
13.33.3.1.1 Addition of Organic Groups 251
13.33.3.1.1.1 Method 1: Alkylation Using an Alkyl Chloride, Bromide, or Iodide 251
13.33.3.1.1.2 Method 2: Alkylation Using a Trialkyloxonium Tetrafluoroborate 251
13.33.3.2 Modification of Substituents 252
13.33.3.2.1 Method 1: Paal–Knorr Pyrrole Synthesis Using an Amine-Functionalized Triazolium Salt 252
13.33.3.2.2 Method 2: Modification by Anion Exchange 253
13.33.3.2.2.1 Variation 1: Of 1,2,4-Triazolium Halides 253
13.33.3.2.2.2 Variation 2: With Silver Salts 254
13.34 Product Class 34: Dithiadiazolium Salts and Dithiadiazolyl-Containing Compounds 256
13.34.1 Product Subclass 1: 1,2,3,5-Dithiadiazolium Salts and Related Compounds 258
13.34.1.1 Synthesis by Ring-Closure Reactions 259
13.34.1.1.1 By Formation of One S--S and Two S--N Bonds 259
13.34.1.1.1.1 Method 1: Synthesis from Amidines Using Sulfur Halides 259
13.34.1.1.1.1.1 Variation 1: Reaction of Amidinium Salts with Sulfur Dichloride and 1,8-Diazabicyclo[5.4.0]undec-7-ene 259
13.34.1.1.1.1.2 Variation 2: Reaction of Amidinium Salts with Sulfur Monochloride 260
13.34.1.1.1.1.3 Variation 3: Reaction of N,N,N'-Tris(trimethylsilyl)amidines with Sulfur Dichloride 260
13.34.1.1.1.2 Method 2: Reaction of Amidoximes with Sulfur Dichloride 261
13.34.1.1.2 By Formation of One S--S, One S--N, and One N--C Bond 262
13.34.1.1.2.1 Method 1: Synthesis from Nitriles 262
13.34.1.1.2.1.1 Variation 1: Reaction with Sulfur Dichloride and Ammonium Chloride 262
13.34.1.1.2.1.2 Variation 2: Reaction with Trithiazyl Trichloride 263
13.34.1.1.2.2 Method 2: Synthesis from Azines Using Trithiazyl Trichloride 263
13.34.1.1.3 By Formation of One S--S and Two N--C Bonds 264
13.34.1.1.3.1 Method 1: Synthesis from Alkenes Using Trithiazyl Trichloride 264
13.34.1.2 Synthesis by Ring Transformation 264
13.34.1.2.1 Method 1: Synthesis by One-Electron Reduction Using Zinc/Copper or Triphenylstibine 264
13.34.1.2.2 Method 2: Synthesis from 1,3-Dichloro-1,3,2,4,6-dithiatriazines by Thermolytic Ring Contraction 265
13.34.2 Product Subclass 2: 1,3,2,4-Dithiadiazolium Salts and Related Compounds 266
13.34.2.1 Synthesis by Ring-Closure Reactions 267
13.34.2.1.1 By Formation of One S--N and One S--C Bond 267
13.34.2.1.1.1 Method 1: Synthesis from Nitriles with Dithionitronium Hexafluoroarsenate 267
13.34.2.1.2 By Formation of One S--N and One N--C Bond 269
13.34.2.1.2.1 Method 1: Synthesis from Bifunctional Acyl Chlorides with an N,N'-Bis(trimethylsilyl)sulfur Diimide 269
13.34.2.2 Synthesis by Ring Transformation 270
13.34.2.2.1 Method 1: Synthesis by One-Electron Reduction Using Triphenylstibine 270
13.34.2.2.2 Method 2: Synthesis from a Dithiadiazastannole Using Carbonyl Difluoride 270
13.34.2.3 Synthesis by Substituent Modification 271
13.34.2.3.1 Method 1: Synthesis by O-Alkylation Using Methyl Fluorosulfonate 271
Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms 274
16.4 Product Class 4: 1,4-Dithiins 274
16.4.6 1,4-Dithiins 274
16.4.6.1 Synthesis by Ring-Closure Reactions 276
16.4.6.1.1 By Formation of Four S--C Bonds 276
16.4.6.1.1.1 Fragments C--C, C--C, and Two S Fragments 276
16.4.6.1.1.1.1 Method 1: Synthesis from (Z)-1,2-Dichloroethene and Sodium Sulfide 276
16.4.6.1.1.1.2 Method 2: Synthesis from Alkynes and Sulfur 277
16.4.6.1.2 By Formation of Two S--C Bonds 277
16.4.6.1.2.1 Fragments C--C--S--C--C and S 277
16.4.6.1.2.1.1 Method 1: Synthesis from 1-Bromo-4-phenoxybut-2-yne and Sodium Sulfide 277
16.4.6.1.2.2 Fragments S--C--C--S and C--C 278
16.4.6.1.2.2.1 Method 1: Synthesis from 1,2-Dihydroxyarenes and 1,2-Dithiols 278
16.4.6.1.2.2.2 Method 2: Synthesis from 1,2,3,4,5-Benzopentathiepin and Active Methylene Compounds 279
16.4.6.1.2.2.3 Method 3: Synthesis from 1,2,3,4,5-Pentathiepins and Alkynes 280
16.4.6.1.2.3 Fragments S--C--C and S--C--C 281
16.4.6.1.2.3.1 Method 1: Thermolysis of 1,2,3-Thiadiazoles 281
16.4.6.1.2.3.2 Method 2: Synthesis from 4-(Alkylamino)-4-oxobutanoic Acids and Thionyl Chloride 283
16.4.6.1.3 By Formation of One S--C Bond 284
16.4.6.1.3.1 Fragment S--C--C--S--C--C 284
16.4.6.1.3.1.1 Method 1: Synthesis from 2-Chloro-1-phenylethane-1,1-dithiol and Sodium Sulfide 284
16.4.6.1.3.1.2 Method 2: Synthesis from 1,8-Diketones 285
16.4.6.2 Synthesis by Ring Transformation 286
16.4.6.2.1 By Ring Contraction 286
16.4.6.2.1.1 Method 1: Synthesis by Photolysis of Unsaturated 18-Membered Thia-Crown Ethers 286
16.4.6.2.1.2 Method 2: Synthesis by Pummerer Dehydration of 3,8-Dihydro-1,2,5,6-dithiadiazocine 1-Oxides 286
16.4.6.3 Aromatization-Type Reactions 287
16.4.6.3.1 By Elimination 287
16.4.6.3.1.1 Method 1: Synthesis from 2-Chloro- and 2,3-Dichloro-1,4-dithianes 287
16.4.6.3.1.2 Method 2: Synthesis from 1,4-Dithiane-2,5-diol 288
16.4.6.4 Synthesis by Substituent Modification 289
16.4.6.4.1 Substitution of Existing Substituents 289
16.4.6.4.1.1 Of Hydrogen 289
16.4.6.4.1.1.1 Method 1: Introduction of Alkyl and Carboxamide Groups by Radical Substitution 289
16.4.6.4.2 Rearrangement of Substituents 291
16.4.6.4.2.1 Method 1: Isomerization of 1,4-Dithiins via Ring-Opening–Ring-Closing Reactions 291
16.4.6.4.3 Modification of Substituents 292
16.4.6.4.3.1 Modification of Sulfur Substituents 292
16.4.6.4.3.1.1 Method 1: Ring Opening of Acenaphtho[1,2-b][1,3]dithiolo[4,5-e][1,4]dithiin-9-one with Potassium tert-Butoxide 292
16.4.6.4.3.1.2 Method 2: Synthesis of Tin Dithiolates from Ketones by Grignard Reaction 293
16.18 Product Class 18: Pyridopyridazines 296
16.18.7 Pyridopyridazines 296
16.18.7.1 Pyrido[2,3-c]pyridazines 298
16.18.7.1.1 Synthesis by Ring-Closure Reactions 298
16.18.7.1.1.1 By Formation of One N--C and One C--C Bond 298
16.18.7.1.1.1.1 Method 1: Cyclization of 3-Aminopyridazine-4-carbonitrile with Malonates 298
16.18.7.1.1.2 By Formation of One N--N Bond 298
16.18.7.1.1.2.1 Method 1: Annulation of 3-(2-Nitrophenyl)quinolin-2-amine 298
16.18.7.2 Pyrido[2,3-d]pyridazines 300
16.18.7.2.1 Synthesis by Ring-Closure Reactions 300
16.18.7.2.1.1 By Formation of Two N--C Bonds 300
16.18.7.2.1.1.1 Method 1: Condensation of Hydrazine with a Dicarbonyl-Functionalized Piperidinone Scaffold 300
16.18.7.2.1.1.2 Method 2: Condensation of Hydrazine with 2-Formylquinoline-3-carboxylate 301
16.18.7.2.1.1.3 Method 3: Incorporating a (2-Formylpyridin-3-yl)copper Reagent in Pyrido[2,3-d]pyridazine Synthesis 302
16.18.7.2.1.1.4 Method 4: Suzuki Cross Coupling of Chloro(methoxy)pyridazin-3(2H)-ones 304
16.18.7.2.1.1.5 Method 5: Condensation of 5,6-Dicarbonyl-Functionalized Pyridinones with Hydrazine 305
16.18.7.2.1.2 By Formation of One N--C and One C--C Bond 307
16.18.7.2.1.2.1 Method 1: Condensation of Acetone with 5-Acetyl-4-amino-6-phenylpyridazin-3(2H)-one 307
16.18.7.2.2 Synthesis by Ring Transformation 308
16.18.7.2.2.1 By Ring Enlargement 308
16.18.7.2.2.1.1 Method 1: Condensation of Hydrazine with Pyridine-2,3-dicarboxylic Anhydride and 3-Benzoylpicolinic Acid 308
16.18.7.2.2.1.2 Method 2: Condensation of Hydrazine with Pyrrolo[3,4-c]pyridinone 311
16.18.7.3 Pyrido[3,2-c]pyridazines 313
16.18.7.3.1 Synthesis by Ring-Closure Reactions 313
16.18.7.3.1.1 By Formation of One N--N Bond 313
16.18.7.3.1.1.1 Method 1: Condensation and Reduction of 2-Amino-2'-nitrobiaryls 313
16.18.7.4 Pyrido[3,4-c]pyridazines 313
16.18.7.4.1 Synthesis by Ring-Closure Reactions 313
16.18.7.4.1.1 By Formation of One N--N and One N--C Bond 313
16.18.7.4.1.1.1 Method 1: Intramolecular Diazo Coupling of 4-Hetarylpyridin-3-amines 313
16.18.7.5 Pyrido[3,4-d]pyridazines 315
16.18.7.5.1 Synthesis by Ring Transformation 315
16.18.7.5.1.1 By Ring Enlargement 315
16.18.7.5.1.1.1 Method 1: Condensation of Hydrazine with 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-dione 315
16.18.7.5.1.1.2 Method 2: Ring Expansion of Pyrazolopyridines 316
16.18.7.5.1.1.3 Method 3: Insertion of Hydrazine into (Z)-3-Benzylidenefuro[3,4-c]pyridin-1(3H)-ones 317
16.18.7.6 Pyrido[4,3-c]pyridazines 319
16.18.7.6.1 Synthesis by Ring-Closure Reactions 319
16.18.7.6.1.1 By Formation of One N--C and One C--C Bond 319
16.18.7.6.1.1.1 Method 1: Fusion of an Aminouracil with a Chloropyridazinecarbonitrile or Pyridazines Having Vicinal Chloro and Carbonyl Groups 319
16.19 Product Class 19: Pyridopyrimidines 322
16.19.5 Pyridopyrimidines 322
16.19.5.1 Pyrido[2,3-d]pyrimidines 323
16.19.5.1.1 By Formation of Three N--C Bonds and One C--C Bond 323
16.19.5.1.1.1 Method 1: Cyclization of Acrylates, Functionalized Nitriles, and Guanidines or Amidines 323
16.19.5.1.2 By Formation of One N--C and Two C--C Bonds 324
16.19.5.1.2.1 Method 1: Cyclization of 2-Heterosubstituted 6-Aminopyrimidin-4(3H)-ones, Aldehydes, and Active Methylene Compounds 324
16.19.5.1.3 By Formation of Two N--C Bonds 328
16.19.5.1.3.1 Method 1: Cyclization of 2-Nitrogen-Functionalized Nicotinamides 328
16.19.5.1.4 By Formation of One N--C and One C--C Bond 332
16.19.5.1.4.1 Method 1: Cyclization of Pyrimidin-4-amines with a,ß-Unsaturated Carbonyl Compounds and Related Species 332
16.19.5.1.5 By Formation of One N--C Bond 336
16.19.5.1.5.1 Method 1: Dehydrative Cyclization of 2-Acetamidonicotinamides 336
16.19.5.1.5.2 Method 2: Cyclization of 5-(4-Aminopyrimidin-5-yl)-1H-imidazole-4-carbonitriles 337
16.19.5.1.6 By Formation of One C--C Bond 338
16.19.5.1.6.1 Method 1: Palladium-Catalyzed Intramolecular Arylation of 4-(2-Bromobenzylamino)pyrimidines 338
16.19.5.2 Pyrido[3,2-d]pyrimidines 339
16.19.5.2.1 By Formation of Three N--C Bonds 339
16.19.5.2.1.1 Method 1: Cycloamination of 3-Isocyanatopyridine-2-carboxylates 339
16.19.5.2.2 By Formation of One C--C Bond 341
16.19.5.2.2.1 Method 1: Palladium-Catalyzed Intramolecular Arylation of 5-(2-Halobenzylamino)pyrimidines 341
16.19.5.3 Pyrido[3,4-d]pyrimidines 342
16.19.5.3.1 By Formation of Two N--C Bonds 342
16.19.5.3.1.1 Method 1: Cyclization of 3-Nitrogen-Functionalized Pyridine-4-carboxylic Acids with Nitrogen-Containing Compounds 342
16.19.5.3.2 By Formation of One N--C and One C--C Bond 342
16.19.5.3.2.1 Method 1: Suzuki Coupling/Condensation of 5-Bromopyrimidine-4-carboxylates with (2-Aminophenyl)boronic Acids 342
16.19.5.4 Pyrido[4,3-d]pyrimidines 343
16.19.5.4.1 By Formation of Two N--C Bonds and One C--C Bond 343
16.19.5.4.1.1 Method 1: Cyclization of 1-Benzylpiperidin-4-one, Nitriles, and Trifluoromethanesulfonic Anhydride 343
16.19.5.4.2 By Formation of Two N--C Bonds 344
16.19.5.4.2.1 Method 1: Cyclization of 4-(Arylethynyl)pyrimidine-5-carbaldehydes with tert-Butylamine 344
16.19.5.4.2.2 Method 2: Cycloamination of N-(3-Acetylpyridin-4-yl)formimidates with Primary Amines 345
16.21 Product Class 21: Pteridines and Related Structures 348
16.21.4 Pteridines and Related Structures 348
16.21.4.1 Synthesis by Ring-Closure Reactions 348
16.21.4.1.1 By Annulation to the Pyrimidine Ring 348
16.21.4.1.1.1 By Formation of Two N--C Bonds 348
16.21.4.1.1.1.1 Fragments N--C--C--N and C--C 348
16.21.4.1.1.1.1.1 Method 1: Synthesis from Pyrimidine-4,5-diamines and Diketones 348
16.21.4.1.1.1.1.2 Method 2: Synthesis from Pyrimidine-4,5-diamines and 1,2,3-Tricarbonyl Compounds 349
16.21.4.1.1.1.1.3 Method 3: Synthesis from Pyrimidine-4,5-diamines and Modified 1,2-Dicarbonyl Systems 349
16.21.4.1.1.1.1.4 Method 4: Synthesis from 5-Nitrosopyrimidin-4-amines and a,ß-Unsaturated Acyl Halides 351
16.21.4.1.1.1.2 Fragments N--C--C and N--C--C 352
16.21.4.1.1.1.2.1 Method 1: From 4-Chloro-5-nitropyrimidines and a-Aminocarbonyl Compounds (Polonovski–Boon Reaction) 352
16.21.4.1.1.1.2.2 Method 2: From 4-Iodopyrimidin-5-amine and 1H-Pyrrole-2-carbaldehyde 353
16.21.4.1.2 By Annulation to the Pyrazine Ring 354
16.21.4.1.2.1 By Formation of Two N--C Bonds 354
16.21.4.1.2.1.1 Fragments N--C--C--C--N and C 354
16.21.4.1.2.1.1.1 Method 1: From 2,3-Disubstituted Pyrazines and One-Carbon Units 354
16.21.4.2 Synthesis by Ring Transformation 354
16.21.4.2.1 Method 1: Synthesis by Ring Contraction of Pyrimidoazepine Derivatives 354
16.21.4.3 Synthesis by Substituent Modification 355
16.21.4.3.1 Substitution of Existing Substituents 355
16.21.4.3.1.1 Substitution of Hydrogen 355
16.21.4.3.1.1.1 Method 1: N-Alkylation of Pteridinones or Their Derivatives 355
16.21.4.3.1.1.2 Method 2: Direct Introduction of Substituents by Nucleophilic Reactions 356
16.21.4.3.1.2 Substitution of Heteroatoms 358
16.21.4.3.1.2.1 Method 1: Substitution of Sulfur: Amination 358
16.21.4.3.1.2.3 Method 2: Substitution of Halogens: Alkylation 361
16.21.4.3.2 Modification of Substituents 362
16.21.4.3.2.1 Method 1: Hydrolysis 362
16.21.4.3.2.2 Method 2: Modification of Amine Substituents 362
16.21.4.3.2.3 Method 3: Oxidation of Alkylsulfanyl Substituents 363
16.21.4.3.3 Rearrangement of Substituents 363
16.21.4.3.3.1 Method 1: Rearrangement of Allyl Groups 363
16.22 Product Class 22: Other Diazinodiazines 366
16.22.6 Other Diazinodiazines 366
16.22.6.1 Pyridazinopyridazines 366
16.22.6.1.1 Addition Reactions 366
16.22.6.1.1.1 Method 1: Addition of Alkyl Groups 366
16.22.6.2 Pyrimidopyridazines 367
16.22.6.2.1 Synthesis by Ring-Closure Reactions 367
16.22.6.2.1.1 By Annulation to an Arene 367
16.22.6.2.1.1.1 By Formation of Two N--C Bonds 367
16.22.6.2.1.1.1.1 Method 1: From Substituted Pyridazines 367
16.22.6.2.1.1.1.2 Method 2: From Substituted Pyrimidines 368
16.22.6.2.1.1.2 By Formation of One N--C and One C--C Bond 371
16.22.6.2.1.1.2.1 Method 1: From 1,2-Dicarbonyl Compounds or a-Bromo Ketones 371
16.22.6.2.1.1.3 By Formation of One N--C Bond 372
16.22.6.2.1.1.3.1 Method 1: From 4,5-Disubstituted Pyrimidines 372
16.22.6.2.2 Synthesis by Substituent Modification 373
16.22.6.2.2.1 Substitution of Existing Substituents 373
16.22.6.2.2.1.1 Method 1: By Substitution of Chlorine 373
16.22.6.2.2.1.2 Method 2: By Substitution of Hydrogen 374
16.22.6.2.3 Addition Reactions 374
16.22.6.2.3.1 Method 1: Hydrogenation 374
16.22.6.3 Pyrimidopyrimidines 375
16.22.6.3.1 Synthesis by Ring-Closure Reactions 375
16.22.6.3.1.1 By Annulation to an Arene 375
16.22.6.3.1.1.1 By Formation of Two N--C Bonds 375
16.22.6.3.1.1.1.1 Method 1: From 2,4,5-Trisubstituted Pyrimidines 375
16.22.6.3.1.1.1.2 Method 2: From 4,5,6-Trisubstituted Pyrimidines 378
16.22.6.3.1.1.1.3 Method 3: From 2,4,5,6-Tetrasubstituted Pyrimidines 380
16.22.6.3.1.1.1.3.1 Variation 1: With a Guanidine or Thiourea 380
16.22.6.3.1.1.1.3.2 Variation 2: With a Thiouronium Chloride and an Amine 381
16.22.6.3.1.2 By Cycloaddition Reactions 382
16.22.6.3.1.2.1 By Formation of Two N--C Bonds 382
16.22.6.3.1.2.1.1 Method 1: By Diels–Alder Reaction 382
16.22.6.3.1.2.2 By Formation of One N--C and One C--C Bond 382
16.22.6.3.1.2.2.1 Method 1: By Diels–Alder Reaction 382
16.22.6.3.1.2.2.1.1 Variation 1: From Methyl 6-Methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 382
16.22.6.3.1.2.2.1.2 Variation 2: From 6-Amino-1,3-dimethylpyrimidine-2,4(1H,3H)-diones 383
16.22.6.3.2 Synthesis By Ring Transformation 384
16.22.6.3.2.1 By Ring Enlargement 384
16.22.6.3.2.1.1 Method 1: From Purine Skeletons 384
16.22.6.3.3 Synthesis by Substituent Modification 386
16.22.6.3.3.1 Modification of Existing Substituents 386
16.22.6.3.3.1.1 Method 1: By Substitution of Chlorine 386
16.22.6.3.3.1.2 Method 2: By Substitution of Sulfur-Containing Groups 387
Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles 390
17.2 Product Class 2: Six-Membered Hetarenes with Three Heteroatoms 390
17.2.1.9 1,2,3-Triazines and Phosphorus Analogues 390
17.2.1.9.1 Monocyclic 1,2,3-Triazines 390
17.2.1.9.1.1 Aromatization 390
17.2.1.9.1.1.1 Method 1: Dehydrogenation and Oxidation of 2,5-Dihydro-1,2,3-triazines 390
17.2.1.9.1.2 Synthesis by Substituent Modification 391
17.2.1.9.1.2.1 Addition Reactions 391
17.2.1.9.1.2.1.1 Method 1: Protonation of 1,2,3-Triazines by Tetrafluoroboric Acid 391
17.2.1.9.1.2.1.2 Method 2: N-Acylation, N-Alkylation, and N-Arylation 392
17.2.1.9.1.2.2 Modification of Substituents 394
17.2.1.9.1.2.2.1 Method 1: Dipolar Cycloaddition with Dicyano(1,2,3-triazin-2-ium-2-yl)methanides 394
17.2.1.9.1.2.2.2 Method 2: Dipolar Cycloaddition with 2-Ethyl-1,2,3-triazin-2-ium Salts 395
17.2.1.9.1.3 Applications of Monocyclic 1,2,3-Triazines in Organic Synthesis 395
17.2.1.9.1.3.1 Method 1: Synthesis of 2,5-Dihydro-1,2,3-triazines 395
17.2.1.9.2 Annulated 1,2,3-Triazines 397
17.2.1.9.2.1 Synthesis by Ring-Closure Reactions 397
17.2.1.9.2.1.1 By Annulation to a Heterocycle or Carbocycle 397
17.2.1.9.2.1.1.1 By Formation of Two N--N Bonds 397
17.2.1.9.2.1.1.1.1 Method 1: Reaction of a 2-(4,5-Dihydro-1H-imidazol-2-yl)thieno[2,3-b]pyridin-3-amine with Nitrous Acid 397
17.2.1.9.2.1.1.1.2 Method 2: Reaction of 2-Amino-1H-pyrrole-3,4-dicarboxamides with Nitrous Acid 398
17.2.1.9.2.1.1.1.3 Method 3: Reaction of Amino-Substituted Pyridine- and Pyridazinecarboxamides with Nitrous Acid 399
17.2.1.9.2.1.1.1.4 Method 4: Reaction of Amino-Substituted Hetarenecarbonitriles with Nitrous Acid and Hydrochloric Acid 400
17.2.1.9.2.1.1.1.5 Method 5: Diazotization of (Aminohetaryl)azoles 404
17.2.1.9.2.1.1.1.6 Method 6: Diazotization of 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarboxamide 405
17.2.1.9.2.1.1.2 By Formation of One N--C Bond 405
17.2.1.9.2.1.1.2.1 Method 1: Cyclization of 2-(Triaz-1-enyl)benzonitriles 405
17.2.1.9.2.1.2 By Annulation to the 1,2,3-Triazine Ring 406
17.2.1.9.2.1.2.1 By Formation of One C--C Bond 406
17.2.1.9.2.1.2.1.1 Method 1: Condensation Reactions of Annulated 4-Hydrazino-1,2,3-triazines 406
17.2.1.9.2.1.2.1.2 Method 2: Condensation Reactions of 4-Chloro-1,2,3-triazines 408
17.2.1.9.2.2 Synthesis by Substituent Modification 410
17.2.1.9.2.2.1 Substitution of Existing Substituents 410
17.2.1.9.2.2.1.1 Of Hydrogen 410
17.2.1.9.2.2.1.1.1 Method 1: N-Alkylation and N-Arylation 410
17.2.1.9.2.2.1.2 Of Heteroatoms 410
17.2.1.9.2.2.1.2.1 Method 1: Substitution of a 4-Chloro-Substitutent with Sulfur-Containing Groups 410
17.2.1.9.2.2.1.2.2 Method 2: Substitution of a 4-Chloro-Substitutent with Amino or Hydrazino Groups 411
17.2.1.9.2.2.1.2.3 Method 3: Substitution of a 4-Chloro-Substitutent with Sodium Azide 416
17.2.1.9.2.2.1.2.4 Method 4: Substitution of a 4-Hydroxy Group by a Halogen 416
17.2.1.9.2.2.1.2.5 Method 5: Substitution of Amino, 4-Hydrazino, and 4-(1H-1,2,4-Triazol-1-yl) Groups 417
17.2.1.9.2.2.2 Modification of Substituents 419
17.2.1.9.2.2.2.1 Method 1: Modification of Nitrogen Functionality 419
17.2.2.3 1,2,4-Triazines 424
17.2.2.3.1 Monocyclic 1,2,4-Triazines 424
17.2.2.3.1.1 Synthesis by Ring-Closure Reactions 424
17.2.2.3.1.1.1 By Formation of Three N--C Bonds 424
17.2.2.3.1.1.1.1 Fragments N--N--C, C--C, and N 424
17.2.2.3.1.1.1.1.1 Method 1: Microwave-Assisted Reaction of a-Diazo-ß-oxo Esters with Hydrazides 424
17.2.2.3.1.1.1.1.2 Method 2: Microwave-Assisted Condensation of 1,2-Dicarbonyl Compounds, Hydrazides, and Ammonium Acetate 425
17.2.2.3.1.1.1.1.3 Method 3: Zirconium-Catalyzed Condensation of Benzil with Hydrazides 426
17.2.2.3.1.1.1.2 Fragments N--N, C--C, C--N 427
17.2.2.3.1.1.1.2.1 Method 1: One-Pot Condensation of Amides, 1,2-Diketones, and Hydrazine 427
17.2.2.3.1.1.2 By Formation of Two N--C Bonds 430
17.2.2.3.1.1.2.1 Fragments N--N--C--N and C--C 430
17.2.2.3.1.1.2.1.1 Method 1: Reaction of 1,2-Dicarbonyl Compounds with Amidrazones 430
17.2.2.3.1.1.2.1.2 Method 2: Reaction of 1,2-Dicarbonyl Compounds with Semicarbazides, Thiosemicarbazides, or Selenosemicarbazides 432
17.2.2.3.1.1.2.1.3 Method 3: Cyclization of Hydrazonoimidazolidines with a-Oxo Esters 433
17.2.2.3.1.1.2.1.4 Method 4: Reaction of Aminoguanidines with a,a-Dihalo Ketones 434
17.2.2.3.1.1.2.1.5 Method 5: Condensation of Thiosemicarbazide with Dialkyl Acetylenedicarboxylates 436
17.2.2.3.1.1.2.1.6 Method 6: Reaction of a-Functionalized Acetonitriles with 1H-Tetrazol-5-amine 437
17.2.2.3.1.1.2.2 Fragments N--C--C--N--N and C 438
17.2.2.3.1.1.2.2.1 Method 1: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Pyridine-2,6-dicarbaldehyde 438
17.2.2.3.1.1.2.2.2 Method 2: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Pyridinecarbaldehydes 439
17.2.2.3.1.1.2.2.3 Method 3: Condensation of Aryl(hydrazono)acetaldehyde Oximes with Quinoline-2-carbaldehydes 440
17.2.2.3.1.1.3 By Formation of One N--C Bond 441
17.2.2.3.1.1.3.1 Fragment C--C--N--N--C--N 441
17.2.2.3.1.1.3.1.1 Method 1: Cyclization of Silyl-Substituted Thiosemicarbazone Acetic Acid Esters 441
17.2.2.3.1.1.3.2 Fragment C--N--C--C--N--N 442
17.2.2.3.1.1.3.2.1 Method 1: Cyclization of a,ß-Unsaturated a-Amido Hydrazides 442
17.2.2.3.1.2 Annulation by the Formation of a Second Heterocyclic Ring 443
17.2.2.3.1.2.1 Method 1: Cyclization of Hydrazides with 1,2,4-Triazin-3(2H)-ones 443
17.2.2.3.1.2.2 Method 2: Cyclization of 6-Benzyl-5-hydrazino-1,2,4-triazin-3(2H)-one with Amidinium Salts 444
17.2.2.3.1.2.3 Method 3: Sonagashira Coupling–Cyclization of 6-Chloro-1,2,4-triazine-3,5-diamines 445
17.2.2.3.1.2.4 Method 4: Cyclization of 6-Acetamido-1,2,4-triazine-5-carboxylates 446
17.2.2.3.1.2.5 Method 5: Cyclization of 3-Amino-1,2,4-triazin-5(4H)-ones with Glyoxal 447
17.2.2.3.1.2.6 Method 6: Cyclization of 5-Azido-2,3-dimethyl-2H-pyrazolo[4,3-e][1,2,4]triazine 448
17.2.2.3.1.2.7 Method 7: Cyclization of 5-[Hydrazono(3,4,5-trimethoxyphenyl)methyl]-1,2,4-triazin-6(1H)-ones 449
17.2.2.3.1.3 Aromatization 450
17.2.2.3.1.3.1 Method 1: Dehydration of Dihydrotriazines 450
17.2.2.3.1.3.2 Method 2: N-Deacylation and Oxidation of Tetrahydro-1,2,4-triazine 450
17.2.2.3.1.4 Synthesis by Substituent Modification 451
17.2.2.3.1.4.1 Substitution of Existing Substituents 451
17.2.2.3.1.4.1.1 Of Hydrogen 451
17.2.2.3.1.4.1.1.1 Method 1: Reaction of 1,2,4-Triazine 4-Oxides with Terminal Alkynes 451
17.2.2.3.1.4.1.2 Of Carbon Functionalities 452
17.2.2.3.1.4.1.2.1 Method 1: Reaction of 1,2,4-Triazine-5-carbonitriles with Nucleophiles 452
17.2.2.3.1.4.1.3 Of Heteroatoms 453
17.2.2.3.1.4.1.3.1 Method 1: Reaction of Chloro-Substituted 1,2,4-Triazines with Amines 453
17.2.2.3.1.4.1.3.2 Method 2: Reaction of Methylsulfonyl-Substituted 1,2,4-Triazines with Alkynyllithium Reagents 454
17.2.2.3.1.4.1.3.3 Method 3: Reaction of Methylsulfanyl-Substituted 1,2,4-Triazines with Amines 455
17.2.2.3.1.4.1.3.4 Method 4: Deamination with Preyssler's Anion 457
17.2.2.3.1.4.2 Addition Reactions 458
17.2.2.3.1.4.2.1 Method 1: Nucleophilic Addition of Cyanide to 1,2,4-Triazine 4-Oxides 458
17.2.2.3.1.4.2.2 Method 2: Nucleophilic Addition of Indoles to 1,2,4-Triazine 4-Oxides 459
17.2.2.3.1.4.2.3 Method 3: Nucleophilic Addition of Carboranes to 1,2,4-Triazine 4-Oxides 460
17.2.2.3.1.4.3 Modification of Substituents 461
17.2.2.3.1.4.3.1 Method 1: Methylation of 3-Thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-ones 461
17.2.2.3.1.4.3.2 Method 2: N-Acylation of Ethyl 6-Amino-1,2,4-triazine-5-carboxylate 461
17.2.2.3.1.4.3.3 Method 3: Displacement of an a-Hydroxy Group with a Halide 462
17.2.2.3.1.4.3.4 Method 4: a-Halogen Exchange 462
17.2.2.3.1.4.3.5 Method 5: Displacement of an a-Fluoride with Amines 463
17.2.2.3.1.4.3.6 Method 6: Displacement of an a-Chloride with Thiols 463
17.2.2.3.1.4.3.7 Method 7: Displacement of an a-Chloride with Amines 464
17.2.2.3.1.4.3.8 Method 8: Displacement of an a-Chloride by Wittig Reaction 465
17.2.2.3.1.4.3.9 Method 9: Ring Cleavage of Tetrazolo[1,5-b][1,2,4]triazin-7-amines 467
17.2.2.3.1.4.3.10 Method 10: Palladium-Catalyzed Arylation of 1,2,4-Triazin-3-amine 468
17.2.2.3.2 1,2,4-Benzotriazines and Related Compounds 469
17.2.2.3.2.1 Synthesis by Ring-Closure Reactions 469
17.2.2.3.2.1.1 By Formation of One N--N and One N--C Bond 469
17.2.2.3.2.1.1.1 Fragments N--C--C--N and N--C 469
17.2.2.3.2.1.1.1.1 Method 1: Reaction of 2-Nitroanilines with Cyanamide 469
17.2.2.3.2.1.1.2 Fragments N--C--N and N--C--C 470
17.2.2.3.2.1.1.2.1 Method 1: Reaction of 1-Halo-2-nitrobenzenes with Guanidine Hydrochloride 470
17.2.2.3.2.2 Synthesis by Ring Transformation 470
17.2.2.3.2.2.1 Method 1: Isomerization of Angular Triazinium Salts 470
17.2.2.3.2.3 Synthesis by Substituent Modification 471
17.2.2.3.2.3.1 Addition Reactions 471
17.2.2.3.2.3.1.1 Method 1: Oxidation of 1,2,4-Benzotriazin-3-amine 1-Oxides 471
17.2.3.6 1,3,5-Triazines and Phosphorus Analogues 474
17.2.3.6.1 1,3,5-Triazines 474
17.2.3.6.1.1 Synthesis by Ring-Closure Reactions 474
17.2.3.6.1.1.1 By Formation of Three N--C Bonds 474
17.2.3.6.1.1.1.1 Fragments N--C, N--C, and N--C 474
17.2.3.6.1.1.1.1.1 Method 1: Trimerization of Dialkylcyanamides or Nitriles 474
17.2.3.6.1.1.1.1.2 Method 2: Trimerization of Imidates 475
17.2.3.6.1.1.1.1.3 Method 3: Reaction of Carbodiimides with Nitrilium Salts 476
17.2.3.6.1.1.2 By Formation of Two N--C Bonds 477
17.2.3.6.1.1.2.1 Fragments N--C--N--C and N--C 477
17.2.3.6.1.1.2.1.1 Method 1: Reaction of Guanidine-1-carbonitrile with Nitriles 477
17.2.3.6.1.1.2.2 Fragments N--C--N and C--N--C 479
17.2.3.6.1.1.2.2.1 Method 1: Reaction of Isothiocyanates with Amidines or Guanidines 479
17.2.3.6.1.1.2.2.2 Method 2: Reaction of Isothiocyanates with Sodium Hydrogen Cyanamide 480
17.2.3.6.1.1.2.2.3 Method 3: Reaction of N-Functionalized Imidoyl Chlorides with Amidine Derivatives 481
17.2.3.6.1.1.2.2.4 Method 4: Reaction of N-(2,2-Dichlorovinyl)benzamides with Amidines 484
17.2.3.6.1.1.2.2.5 Method 5: Reaction of 4-Oxo-1,3-benzoxazinium Perchlorates with Guanidines 485
17.2.3.6.1.1.2.2.6 Method 6: Reaction of Amidinium Salts with Pyrazolamines or 1,2,4-Triazolamines 486
17.2.3.6.1.1.2.3 Fragments N--C--N--C--N and C 487
17.2.3.6.1.1.2.3.1 Method 1: Reaction of Biguanides with Carboxylic Acid Derivatives 487
17.2.3.6.1.1.2.3.2 Method 2: Reaction of Zinc(II) Bis[bis(methoxyimido)amide] with Carboxylic Acid Derivatives 490
17.2.3.6.1.2 Synthesis by Substituent Modification 491
17.2.3.6.1.2.1 Substitution of Existing Substituents 491
17.2.3.6.1.2.1.1 Of Hydrogen 491
17.2.3.6.1.2.1.1.1 Method 1: Amination 491
17.2.3.6.1.2.1.2 Of Carbon Functionalities 492
17.2.3.6.1.2.1.2.1 Method 1: Substitution of Trinitromethyl Groups 492
17.2.3.6.1.2.1.2.2 Method 2: Substitution of Cyano Groups 493
17.2.3.6.1.2.1.2.3 Method 3: Substitution of Bis(tert-Butoxycarbonyl)(nitro)methyl Groups 495
17.2.3.6.1.2.1.3 Of Halogens by Carbon Functionalities 495
17.2.3.6.1.2.1.3.1 Method 1: Reaction with Grignard Reagents 495
17.2.3.6.1.2.1.3.2 Method 2: Reaction with Boronic Acids (Suzuki Coupling) 498
17.2.3.6.1.2.1.3.3 Method 3: Reaction with Organotin Reagents 499
17.2.3.6.1.2.1.3.4 Method 4: Reaction with Arynes 500
17.2.3.6.1.2.1.3.5 Method 5: Reaction with Arylzinc Chlorides (Negishi Coupling) 502
17.2.3.6.1.2.1.3.6 Method 6: Nickel-Catalyzed Ullmann Homocoupling Reactions 502
17.2.3.6.1.2.1.3.7 Method 7: Cobalt-Catalyzed Arylation or Benzylation Reactions 503
17.2.3.6.1.2.1.3.8 Method 8: Sonagashira Reactions 505
17.2.3.6.1.2.1.3.9 Method 9: Cross-Coupling Reactions with Organoaluminum Compounds 505
17.2.3.6.1.2.1.4 Of Halogens by Oxygen Functionalities 506
17.2.3.6.1.2.1.4.1 Method 1: Exchange of Chlorine in 2,4,6-Trichloro-1,3,5-triazine 506
17.2.3.6.1.2.1.4.2 Method 2: Exchange of Chlorine in Chloro-Substituted 1,3,5-Triazines 509
17.2.3.6.1.2.1.5 Of Halogens by Sulfur Functionalities 509
17.2.3.6.1.2.1.5.1 Method 1: Exchange of Chlorine for an Alkylsulfanyl Group 509
17.2.3.6.1.2.1.5.2 Method 2: Exchange of Chlorine for an Arylsulfanyl Group 509
17.2.3.6.1.2.1.6 Substitution of Halogens by Selenium or Tellurium Functionalities 510
17.2.3.6.1.2.1.6.1 Method 1: Exchange of Chlorine with Chalcogenide Nucleophiles 510
17.2.3.6.1.2.1.7 Of Halogens by Nitrogen Functionalities 510
17.2.3.6.1.2.1.7.1 Method 1: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines (Monosubstitution) 510
17.2.3.6.1.2.1.7.2 Method 2: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines (Trisubstitution) 511
17.2.3.6.1.2.1.7.3 Method 3: Reaction of 2,4-Dichloro-1,3,5-triazines with Amines 513
17.2.3.6.1.2.1.7.4 Method 4: Reaction of 2-Chloro-1,3,5-triazines with Amines 514
17.2.3.6.1.2.1.7.5 Method 5: Reaction of 2-Chloro-1,3,5-triazines with Ureas or Thioureas 515
17.2.3.6.1.2.1.8 Generation of 1,3,5-Triazine Libraries by Substitution of Chlorine by Oxygen or Nitrogen Functionalities 517
17.2.3.6.1.2.1.8.1 Method 1: Parallel Synthesis on Solid Supports 517
17.2.3.6.1.2.1.9 Of Sulfur Functionalities 518
17.2.3.6.1.2.1.9.1 Method 1: Substitution of Sulfonyl Groups 518
17.2.3.6.1.2.1.9.2 Method 2: Cross Coupling of Sulfanyl-Substituted 1,3,5-Triazines with Functionalized Organozinc Reagents 518
17.2.3.6.1.2.1.9.3 Method 3: Reductive Rearrangement of 2-(Triazinylsulfanyl)benzamides 519
17.2.3.6.1.2.2 Rearrangement of Substituents 520
17.2.3.6.1.2.2.1 Method 1: Smiles Rearrangement 520
17.2.3.6.1.2.2.2 Method 2: Thermal Isomerization of 2,4,6-Trialkoxy-1,3,5-triazines 521
17.2.3.6.1.2.3 Modification of Substituents 521
17.2.3.6.1.2.3.1 Method 1: S-Oxidation 521
17.2.3.6.1.2.3.2 Method 2: Modification at the a-Carbon 521
17.2.3.6.1.2.3.2.1 Variation 1: Conversion of Trinitromethyl Groups into Nitriles 521
17.2.3.6.1.2.3.2.2 Variation 2: Conversion of Trinitromethyl Groups into Nitrile Oxides and Subsequent Heterocycle Formation 522
17.2.3.6.1.2.3.2.3 Variation 3: Conversion of Dinitromethyl Groups into Oxadiazole 2-Oxides 525
17.2.3.6.1.2.3.2.4 Variation 4: Conversion of Alkynyltriazines into Triazoles Using Click Chemistry 525
17.2.3.6.1.2.3.3 Method 3: Reaction of Nitrogen Substituents 526
17.2.3.6.1.2.3.3.1 Variation 1: N-Heterocycle Formation 526
17.2.3.6.1.2.3.3.2 Variation 2: N-Alkylation 527
17.2.3.6.1.2.3.3.3 Variation 3: Debenzylation 528
17.2.3.6.1.2.3.3.4 Variation 4: Thiourea and Thiazole Formation 528
Volume 34: Fluorine 532
34.1 Product Class 1: Fluoroalkanes 532
34.1.1.7 Synthesis by Substitution of Hydrogen 532
34.1.1.7.1 Method 1: Direct Fluorination with Elemental Fluorine 533
34.1.1.7.2 Method 2: Reaction with Selectfluor 535
Author Index 540
Abbreviations 560
List of All Volumes 566

Abstracts


4.4.25.11 Acylsilanes


M. Nahm Garrett and J. S. Johnson

This chapter is an update to the previous Science of Synthesis contribution on the synthesis and applications of acylsilanes. It covers syntheses and applications reported since 2000. Synthetic methods described herein are divided according to five target product subtypes: simple acylsilanes, bis(acylsilanes), α-oxo acylsilanes, α,β-unsaturated acylsilanes, and α-amino acylsilanes. The largest of those sections, simple acylsilanes, is further divided according to the main strategies used for their synthesis: hydrolysis of acetals, oxidation of organocuprates, and acyl substitution of carboxylic amides. The major applications of the various types of acylsilanes are also described.

Keywords: acylsilanes · dithianes · hydrolysis · cuprates · oxidation · amides · substitution · bis(acylsilanes) · nucleophilic addition · Brook rearrangement · acyl anion equivalent

8.1.34 Asymmetric Lithiation


J.-C. Kizirian

This section deals with processes that produce a chiral lithiated species by an asymmetric lithiation. The lithium atom can be introduced on an sp3 carbon atom (centered chirality) or an sp2 carbon atom (axial or planar chirality). The C—Li bond can be formed by one of three main methods: deprotonation (of a C—H bond), transmetalation (usually from tin), or reductive lithiation (from halo, cyano, arylsulfanyl, arylselanyl, or aryltellanyl derivatives). The configurational stability of the lithiated species determines the stereochemical pathway of the reaction, but is not a necessary condition to have a selective process. The product is formed by one of the following mechanisms: enantioselective deprotonation, dynamic thermodynamic resolution, or dynamic kinetic resolution. Furthermore, the electrophilic substitution step can take place with inversion or retention of configuration.

Keywords: lithium compounds · dynamic thermodynamic resolution · dynamic kinetic resolution · enantioselective deprotonation · diastereoselective deprotonation · Wittig rearrangement · tin–lithium exchange · reductive lithiation · carbolithiation

13.32 Product Class 32: 1,2,3-Trithioles, Their Benzo Derivatives, and Selenium and Tellurium Analogues


R. A. Aitken

This chapter covers methods for the synthesis of 1,2,3-trithioles, 1,2,3-benzotrithioles, and a range of eleven different analogues with one or more sulfur atoms replaced by selenium or tellurium. None of these ring systems has previously been included in Science of Synthesis.

Keywords: sulfur heterocycles · selenium compounds · tellurium compounds · trithioles · dithiatelluroles · benzotrithioles · benzodithiaselenoles · benzothiadiselenoles · benzotriselenoles · benzodithiatelluroles · benzothiaselenatelluroles · benzodiselenatelluroles

13.33 Product Class 33: 1,2,4-Triazolium Salts


C. A. Gondo and J. W. Bode

A 1,2,4-triazolium salt is composed of a cationic five-membered ring associated with a negatively charged counterion. These compounds are stable precursors for N-heterocyclic carbenes (NHCs), which are used either as ligands for metal-based catalysts or as organic catalysts. In this survey, the major routes for the synthesis of 1,2,4-triazolium salts are reviewed.

Keywords: heterocycle · N-heterocyclic carbene · ligand · organocatalyst · ring-closure reactions · ring transformation · substituent modification · 1,2,4-triazolium salts

13.34 Product Class 34: Dithiadiazolium Salts and Dithiadiazolyl-Containing Compounds


R. J. Pearson

This chapter describes the preparation of 1,2,3,5-dithiadiazolium salts and their corresponding radicals and dimers. These crystalline and brightly colored compounds are most commonly synthesized, in varying yields, by ring-closure reactions involving amidines, amidoximes, nitriles, azines, and alkenes. The synthetic routes to the less stable 1,3,2,4-isomers are also discussed, together with the conditions for their complete isomerism to the dominant 1,2,3,5-isomers.

Keywords: dithiadiazole · radical · dimerization · isomerism · ring closure · ring transformation

16.4.6 1,4-Dithiins


S. A. Kosarev

This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of monocyclic 1,4-dithiins and their annulated analogues. It focuses on the literature published in the period 2003–2011.

Keywords: alkynes · chromium catalysts · dihalides · diimides · diketones · 1,4-dithiins · diols · dithianes · dithiols · sulfides · sulfinates · sulfur compounds · sulfur heterocycles · thiadiazoles · thiolates · thiophenes

16.18.7 Pyridopyridazines


S. Lou and J. Zhang

This update presents the state of the art in the synthesis of pyridopyridazine heterocyclic systems from 2001 to 2011. The synthetic methodologies are grouped based on the isomeric pyridopyridazine structures and typical experimental procedures are included. Some pyridopyridazine derivatives have been used as drug candidates and brief discussions are given of their pharmaceutical activities in the treatment of cancers, allergies, pain states, inflammatory diseases, and erectile dysfunction.

Keywords: pyridopyridazine · heterocycles · pyridine · pyridazine · pyridopyridazinone · hydrazine · dicarbonyl

16.19.5 Pyridopyrimidines


Y.-J. Wu

This chapter in an update to the previous Science of Synthesis contribution describing the the synthesis of all four isomeric pyridopyrimidines and their saturated derivatives. It covers syntheses described from 2002 until 2011.

Keywords: pyrido[2,3-d]pyrimidine · pyrido[3,2-d]pyrimidine · pyrido[3,4-d]pyrimidine · pyrido[4,3-d]pyrimidine

16.21.4 Pteridines and Related Structures


T. Ishikawa

This review is an update to the earlier Science of Synthesis contribution describing the synthesis of pteridines and pteridinones. It focuses on syntheses described since 2003.

Keywords: pteridine · pteridinone · ring closure · ring transformation · substituent modification

16.22.6 Other Diazinodiazines


T. Ishikawa

This review is an update to the earlier Science of Synthesis contribution describing the synthesis of diazinodiazines other than pteridines. It focuses on syntheses described since 2003.

Keywords: diazinodiazine · pyridazinopyridazine · pyrimidopyridazine · pyrimidopyrimidine · addition · ring closure · substituent modification

17.2.1.9 1,2,3-Triazines and Phosphorus Analogues


P. Aggarwal and M. W. P. Bebbington

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2,3-triazines. The reported diazotization method is of particular note, as the substrate scope has broadened in recent years.

Keywords: alkylation · arylation · condensation reactions · cyclization · diazotization · dipolar cycloaddition · nucleophilic aromatic substitution · nucleophilic addition · ring-closure reactions · triazines

17.2.2.3 1,2,4-Triazines


P. Aggarwal and M. W. P. Bebbington

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of 1,2,4-triazines. Of particular note are the microwave-assisted reactions that have emerged in recent years in addition to more conventional methods.

Keywords: condensation reactions · cyclization · dehydration · diazo compounds · microwave-assisted reactions · multicomponent reactions · nucleophilic addition · ring closure · ring formation · 1,2,4-triazines

17.2.3.6 1,3,5-Triazines and Phosphorus Analogues


P. Aggarwal and M. W. P. Bebbington

This manuscript is an update to the earlier Science of Synthesis edition describing methods for the synthesis of 1,3,5-triazines. A number of transition-metal-catalyzed techniques have emerged in recent years to complement traditional methods.

Keywords: condensation reactions · cross-coupling reactions · multicomponent reactions · nucleophilic aromatic substitution · ring closure · ring formation · transition metals · 1,3,5-triazines

34.1.1.7 Synthesis by Substitution of Hydrogen


G. Sandford

Recent methods for the selective fluorination of sp3-hybridized...

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte acylsilanes • asymmetric lithiation • benzo derivatives • BENZO DERIVA TIVES • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • dithiadiazolium salts • Functional Group • Hydrogen • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • phosphorus • Practical • practical organic chemistry • pteridines • pyridopyridazines • Reaction • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • selenium • Synthese • synthesis • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • tellurium • triazines
ISBN-10 3-13-178831-3 / 3131788313
ISBN-13 978-3-13-178831-3 / 9783131788313
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 18,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99