Dr. Supratim Choudhuri is a toxicologist at the Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration. Dr. Choudhuri has extensively published in the fields of molecular toxicology, metabolism, genomics, and epigenetics. He has previously edited a book, titled Genomics: Fundamentals and Applications with a colleague Dr. David B. Carlson.
Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools provides a coherent and friendly treatment of bioinformatics for any student or scientist within biology who has not routinely performed bioinformatic analysis. The book discusses the relevant principles needed to understand the theoretical underpinnings of bioinformatic analysis and demonstrates, with examples, targeted analysis using freely available web-based software and publicly available databases. Eschewing non-essential information, the work focuses on principles and hands-on analysis, also pointing to further study options. - Avoids non-essential coverage, yet fully describes the field for beginners- Explains the molecular basis of evolution to place bioinformatic analysis in biological context- Provides useful links to the vast resource of publicly available bioinformatic databases and analysis tools- Contains over 100 figures that aid in concept discovery and illustration
Fundamentals of Molecular Evolution*
This chapter discusses some fundamental concepts of molecular evolution—that is, the evolution of genome and genetic diversity. The chapter discusses why an understanding of molecular evolutionary principles is important to understand the rationale for bioinformatic analyses. Basic premises of Darwinism are discussed along with a description of the pioneering work demonstrating “Darwinism in the test tube.” The molecular basis of heritable genetic variations and factors affecting gene frequency in a population are highlighted. The discussion moves on to the neutral theory of molecular evolution and molecular clock hypothesis. A simple method for determining signatures of positive (Darwinian) selection is also described. The relationship between biological classification and molecular phylogenetics is emphasized, along with a brief description of phenetics, cladistics, and evolutionary classification. The chapter concludes with a very brief introduction to the concept of the phylogenetic tree, which is discussed in more detail in Chapter 9.
Keywords
natural selection; genome evolution; Hardy–Weinberg equilibrium; neofunctionalization; subfunctionalization; population bottleneck; founder effect; neutral theory; molecular clock; selective sweep; hitchhiking effect; cladistics
Outline
2.1 Bioinformatics, Molecular Evolution, and Phylogenetics 27
2.2 Biological Evolution and Basic Premises of Darwinism 28
2.2.1 First Experimental Demonstration of Evolutionary Principles in the Test Tube 29
2.3 Molecular Basis of Heritable Genetic Variations—The Raw Materials for Evolution 30
2.3.1 Molecular Basis of Mutation 30
2.3.2 Recombination and Generation of Genetic Diversity 33
2.3.3 Gene Flow and Introduction of Genetic Diversity 34
2.3.4 Origin of New Genes, Creation of Genetic Diversity and Genome Evolution 34
2.3.4.1 Origin of New Genes from Coding Sequences (Pre-existing Genes) 34
2.3.4.2 Origin (de Novo) of New Genes from Noncoding Sequences 40
2.4 Factors that Affect Gene Frequency in a Population 41
2.4.2 Migration (Gene Flow) 43
2.5 The Neutral Theory of Evolution 47
2.5.2 Signatures of Positive Selection 47
2.5.3 Selective Sweep and the Hitchhiking Effect 48
2.6 Molecular Clock Hypothesis in Molecular Evolution 49
2.7 Molecular Phylogenetics 49
2.7.1 From Systematics and Biological Classification to Molecular Phylogenetics 50
2.7.2 Systems of Biological Classification 50
2.7.2.1 Phenetics and Phenograms 50
2.7.2.2 Cladistics, Clades, and Cladograms 50
2.7.2.3 Evolutionary Classification 52
References 52
2.1 Bioinformatics, Molecular Evolution, and Phylogenetics
Probably, the shortest classical definition of evolution is descent with modification from the ancestor. Evolutionary changes lead to changes in the inherited characters in a populationa. The ultimate outcome of evolution is the formation of new species (speciation), but evolution can generate diversity at all possible levels of biological organization including at the level of macromolecules, such as DNA and proteins.
Molecular evolution is a relatively recent discipline that has developed since DNA and protein sequence information became available. Simply stated, molecular evolution is evolution at the level of nucleic acids and proteins. At the molecular level, the primary cause of evolution is the accumulation of changes in genomic sequence (hence proteins as wellb). Therefore, evolution results in alteration of the genetic composition (gene pool) of a population over time. Changes in gene pool are associated with changes in gene frequency in a populationc.
The work of Emile Zuckerkandl and Linus Pauling between 1960 and 1965, particularly their seminal publication in 1965,1 is credited with ushering in a change in evolutionary thinking from the level of species to the level of macromolecular sequence. Such a paradigm shift in evolutionary thinking from population to macromolecular sequence essentially paved the way for the birth of a new field, molecular evolution. The classical definition of evolution as descent with modification refers to the event of speciation—that is, the formation of new species from an ancestral species. The same definition and concepts also apply to molecular evolution except for the fact that the targets of molecular evolution are nucleic acid and protein sequences. The causes of molecular evolution, such as mutation, recombination, gene conversion, duplication and divergence of genes, de novo origin of new genes, and structural and functional evolution of genomes, as well as changes in gene frequency in a population, are also at the heart of evolution at the level of species and beyond.
The availability of the complete genome sequence of many species provides a wealth of data and information for molecular evolutionary studies and comparative genomics. Evolutionary biology provides the scientific context and bioinformatic analysis utilizes the analytical tools for comparative genomics. In the context of evolutionary biology, the goal of various applications of bioinformatics, such as sequence alignment, sequence identity/similarity search, motif analysis, sequence homology analysis, chromosomal synteny analysis, and making phylogenetic trees, is to trace the signature and determine the rate of molecular evolution, as well as study the relatedness of taxa. Following the spirit of the now-famous statement by Dobzhansky that “nothing in biology makes sense except in the light of evolution, ”Higgs and Attwood (2005) have stated, “nothing in bioinformatics makes sense except in the light of evolution”.2 This is a very astute way of summarizing the relationship between bioinformatics and molecular evolution.
It has become a standard practice in studies involving DNA or protein sequence to obtain a phylogenetic tree and assess sequence divergence. Freely available software on the web has made it almost effortless to input the data and quickly get an output. Because of such widespread use of DNA and protein sequence analysis and phylogenetic inference, it is important to understand the principles of molecular evolution. The following narrative summarizes some fundamental concepts of molecular evolution that help in understanding the evolutionary foundations of bioinformatics.
2.2 Biological Evolution and Basic Premises of Darwinism
Biological evolution is most simply defined as descent with modification; the modification may be small scale (e.g. changes in gene/protein sequence) or large scale (e.g. speciation). After life had originated on Earth about 3.6 billion (3600 million) years ago, it evolved from simple to progressively complex forms, all from one primordial ancestral form, called the last universal common ancestor (LUCA). The evolutionary history of the descendants of LUCA constitutes the tree of life.
Evolution of life is a continuous process involving splitting of lineages, divergence of the descendants, and adaptive radiation into different environments (ecological niches) creating phenotypic diversity, and ultimately leading to reproductive isolation and the formation of new species (speciation). It is important to note in this context that even though “species” is an accepted taxonomic category, the concept of species and speciation is a hotly debated issue even 150 years after the publication of Darwin’s On the Origin of Species. We will follow the most widely used definition of species, provided by the biological species concept.
Two pioneering architects of the biological species concept were Theodosius Dobzhansky and Ernst Mayr. According to Mayr’s classical definition of species, “species are groups of actually or potentially interbreeding natural populations that are reproductively isolated from other such groups”d.3 In other words, a species is a reproductive community that represents a unique gene pool. Genetic exchange between members of two different gene pools is usually not successful in producing fertile offspring that could perpetuate the existence of the species. When populations within a species become isolated by geography, mate selection, or other means that interfere with mating, they may start to diverge and over time may evolve into new species.
Darwin’s theory of...
Erscheint lt. Verlag | 9.5.2014 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Allgemeines / Lexika |
Studium ► Querschnittsbereiche ► Epidemiologie / Med. Biometrie | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
ISBN-10 | 0-12-410510-6 / 0124105106 |
ISBN-13 | 978-0-12-410510-2 / 9780124105102 |
Haben Sie eine Frage zum Produkt? |
Größe: 54,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 14,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich