Science of Synthesis: Stereoselective Synthesis Vol. 3 (eBook)

Stereoselective Pericyclic Reactions, Cross Coupling, and C-H and C-X Activation

P. Andrew Evans (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
1166 Seiten
Thieme (Verlag)
978-3-13-178961-7 (ISBN)

Lese- und Medienproben

Science of Synthesis: Stereoselective Synthesis Vol. 3 -
Systemvoraussetzungen
Systemvoraussetzungen
259,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<p>The major emphasis here is on enantioselective reactions using asymmetric catalysts. Examples from the total synthesis of various natural and unnatural targets validates the utility of the synthetic methods. Specific topics discussed: cycloaddition, cycloisomerization and sigmatropic rearrangement reactions, allylic and carbonyl functionalization reactions, metal-catalyzed cross-coupling reactions, desymmetrization, fluorination, polymerization and sulfide oxidation reactions.</p><p>This volume is part of a 3-volume set: <cite>Science of Synthesis <a href='http://www.thieme.com/index.php?page=shop.product_details&amp;flypage=flypage.tpl&amp;product_id=1313&amp;category_id=11&amp;keyword=3-volume+set&amp;option=com_virtuemart&amp;Itemid=53'>Stereoselective Synthesis</a> Workbench Edition</cite><BR><br ><a href='http://www.thieme-chemistry.com/sss'>Further information about Stereoselective Synthesis</a> (including sample pages and the table of contents)</p>

Science of Synthesis: Stereoselective Synthesis 3 – Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation 1
Organizational Structure of Science of Synthesis 2
Science of Synthesis Reference Library 3
Title page 5
Imprint 7
Preface 8
Volume Editors' Preface 10
Stereoselective Synthesis Volumes 12
Abstracts 14
Overview 26
Table of Contents 28
Introduction 52
3.1 [m + n]-Cycloaddition Reactions (Excluding [4 + 2]) 58
3.1.1 [2 + 2]-Cycloaddition Reactions 59
3.1.1.1 [2 + 2] Cycloadditions Catalyzed by Transition Metals 59
3.1.1.1.1 Chiral Titanium Catalysts 59
3.1.1.1.2 Chiral Copper Catalysts 61
3.1.1.1.3 Chiral Rhodium Catalysts 62
3.1.1.1.4 Chiral Iridium Catalysts 63
3.1.1.2 [2 + 2] Cycloadditions Catalyzed by Organic Molecules 65
3.1.1.2.1 Lectka's Quinine-Derived Catalysts 65
3.1.1.2.2 Fu's 4-Pyrrolidinopyridine Catalysts 67
3.1.1.2.2.1 Asymmetric Staudinger Synthesis of ß-Lactams 67
3.1.1.2.2.2 [2 + 2] Cycloadditions of Disubstituted Ketenes with Aldehydes 68
3.1.1.2.2.3 [2 + 2] Cycloadditions of Ketenes with Azo Compounds 69
3.1.1.2.2.4 [2 + 2] Cycloadditions of Ketenes with Nitroso Compounds 70
3.1.1.2.3 Corey's Oxazaborolidine Catalysts 71
3.1.1.2.4 Ye's N-Heterocyclic Carbene Catalysts 73
3.1.1.2.4.1 N-Heterocyclic Carbene Catalyzed Staudinger Reaction of Ketenes 73
3.1.1.2.4.2 N-Heterocyclic Carbene Catalyzed [2 + 2] Cycloadditions of Disubstituted Ketenes with 2-Oxoaldehydes 74
3.1.1.2.4.3 N-Heterocyclic Carbene Catalyzed [2 + 2] Cycloadditions of Ketenes with Ketones 75
3.1.1.2.4.4 N-Heterocyclic Carbene Catalyzed [2 + 2] Cycloadditions of Ketenes with Azodicarboxylates 76
3.1.2 [3 + 2]-Cycloaddition Reactions 77
3.1.2.1 Phosphine-Catalyzed [3 + 2]-Cycloaddition Reactions of Allenoates with Dienophiles 78
3.1.2.1.1 Cycloaddition Reactions Catalyzed by P-Chiral 7-Phosphabicyclo[2.2.1]heptane 79
3.1.2.1.2 Cycloaddition Reactions Catalyzed by Binaphthyl-Derived Phosphines 80
3.1.2.1.3 Cycloaddition Reactions Catalyzed by Amino Acid Based Phosphines 82
3.1.2.1.4 Cycloaddition Reactions Catalyzed by Planar-Chiral 2-Phospha[3]ferrocenophanes 83
3.1.2.1.5 Cycloaddition Reactions Catalyzed by Chiral Thiourea-Containing Phosphines 84
3.1.2.2 Palladium-Catalyzed Asymmetric [3 + 2] Trimethylenemethane Cycloaddition Reactions 85
3.1.3 [4 + 1]-Cycloaddition Reactions 90
3.1.3.1 Rhodium- and Platinum-Catalyzed Asymmetric [4 + 1]-Cycloaddition Reactions of Vinylallenes and Carbon Monoxide 90
3.1.3.2 Copper-Catalyzed Asymmetric [4 + 1] Cycloadditions of Enones with Diazo Compounds 93
3.1.4 [3 + 3]-Cycloaddition Reactions 96
3.1.4.1 Chiral Lewis Acid Catalyzed [3 + 3] Cycloadditions of Nitrones to Doubly Activated Cyclopropanes 96
3.1.4.2 Palladium-Catalyzed Asymmetric [3 + 3] Cycloadditions of Trimethylenemethane Derivatives with Nitrones 98
3.1.5 [4 + 3]-Cycloaddition Reactions 99
3.1.5.1 Asymmetric Organocatalysis of [4 + 3]-Cycloaddition Reactions of Allylic Cations and Dienes 99
3.1.5.2 Chiral Lewis Acid Catalyzed [4 + 3] Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations Derived from N-Allenylamides 100
3.1.5.3 Rhodium-Catalyzed Asymmetric [4 + 3] Cycloadditions between a-Diazo ß,.-Unsaturated Esters and Dienes 102
3.1.5.4 Palladium-Catalyzed [4 + 3] Cycloadditions of .-Methylene-d-valerolactones 105
3.1.5.5 Palladium-Catalyzed [4 + 3] Intramolecular Cycloadditions of Alkylidenecyclopropanes and Dienes 107
3.1.6 [5 + 2]-Cycloaddition Reactions 108
3.1.6.1 Rhodium-Catalyzed Asymmetric [5 + 2] Cycloadditions of Vinylcyclopropanes and p-Systems 108
3.1.7 [6 + 3]-Cycloaddition Reactions 111
3.1.7.1 Palladium-Catalyzed Asymmetric [6 + 3] Cycloaddition of Trimethylenemethane with Tropones 111
3.2 [4 + 2]-Cycloaddition Reactions 118
3.2.1 Enantioselective Diels--Alder Reactions Catalyzed by Chiral Lewis Acids 118
3.2.1.1 Enantioselective Catalysis Using Chiral Boron Compounds 118
3.2.1.1.1 Using a Cationic Oxazaborolidine 119
3.2.1.1.2 Using Boronic Acid Esters of Chiral 3-(2-Hydroxyphenyl)binaphthols 124
3.2.1.2 Enantioselective Catalysis Using Chiral Copper(II) Complexes 127
3.2.1.2.1 Using a Chiral Copper(II)--Bis(4,5-dihydrooxazole) Complex 127
3.2.1.2.2 Using a Chiral Copper(II)--3-Arylalanine Amide Complex 134
3.2.1.2.3 Using a Copper(II)--DNA Complex 136
3.2.1.3 Enantioselective Catalysis Using Other Chiral Lewis Acids 137
3.2.2 Enantioselective Diels--Alder Reactions Catalyzed by Organoammonium Salts 140
3.2.2.1 Enantioselective Catalysis Using Chiral Secondary Ammonium Salts 141
3.2.2.2 Enantioselective Catalysis Using Chiral Primary Ammonium Salts 145
3.2.2.3 Enantioselective Catalysis Using Hydrogen-Bonded Complexes 150
3.2.3 Hetero-Diels--Alder Reactions 154
3.2.3.1 Enantioselective Hetero-Diels--Alder Reactions of Carbonyl Compounds 154
3.2.3.1.1 Enantioselective Catalysis Using a Chiral Chromium(III) Complex 155
3.2.3.1.2 Enantioselective Catalysis Using Other Chiral Lewis Acids 159
3.2.3.1.3 Enantioselective Catalysis Using Chiral Organocatalysts 161
3.2.3.2 Enantioselective Hetero-Diels--Alder Reactions of Imines and Related Compounds 164
3.2.3.2.1 Enantioselective Aza-Diels--Alder Reaction of Electron-Rich Dienes with Imines 164
3.2.3.2.2 Enantioselective Aza-Diels--Alder Reaction of 1-Azabuta-1,3-dienes 168
3.3 [m + n + 1]-Carbocyclization Reactions 176
3.3.1 [2 + 2 + 1] Carbocyclization of Enynes with Carbon Monoxide 176
3.3.1.1 Enantioselective Titanium-Catalyzed Pauson--Khand Reactions 176
3.3.1.2 Rhodium-Catalyzed Pauson--Khand Reactions 178
3.3.1.2.1 Enantioselective Reactions 178
3.3.1.2.2 Diastereoselective Reactions 181
3.3.1.3 Enantioselective Iridium-Catalyzed Pauson--Khand Reactions 183
3.3.1.4 Enantioselective Cobalt-Catalyzed Pauson--Khand Reactions 184
3.3.2 Rhodium-Catalyzed [2 + 2 + 1] Carbocyclization Using Aldehydes as a Carbon Monoxide Source 187
3.3.2.1 Enantioselective Rhodium-Catalyzed Reactions Using Aldehydes 187
3.3.3 Ruthenium-Catalyzed [3 + 2 + 1] Carbocyclization of Silylalkynes and Enones with Carbon Monoxide 191
3.3.4 Nickel-Catalyzed [4 + 2 + 1] Carbocyclization of Dienynes with Diazomethane 192
3.3.5 Rhodium-Catalyzed [5 + 2 + 1] Carbocyclization of Vinylcyclopropanes and Alkynes with Carbon Monoxide 193
3.3.6 Palladium-Catalyzed [4 + 4 + 1] Carbocyclization of Two Vinylallenes with Carbon Monoxide 194
3.4 [m + n + 2]-Carbocyclization Reactions 196
3.4.1 [2 + 2 + 2]-Carbocyclization Reactions 196
3.4.1.1 Ruthenium(II)-Mediated [2 + 2 + 2] Carbocyclizations 196
3.4.1.1.1 Control of Diastereoselectivity 197
3.4.1.1.1.1 Intramolecular Carbocyclization of Dienynes 197
3.4.1.2 Cobalt(I)-Mediated [2 + 2 + 2] Carbocyclizations 198
3.4.1.2.1 Control of Diastereoselectivity 198
3.4.1.2.1.1 Cocyclization of Alkynylboronates and Alkenes 198
3.4.1.2.1.2 Cocyclization of Diynes and Alkenes 201
3.4.1.2.1.3 Cocyclization of Yne-Heterocycles with Alkynes 203
3.4.1.2.1.4 Intramolecular Carbocyclization of Enediynes 207
3.4.1.2.1.5 Intramolecular Carbocyclization of Diynals and Diynones 212
3.4.1.2.1.6 Intramolecular Carbocyclization of Allenediynes 213
3.4.1.2.1.7 Intramolecular Cyclotrimerization of Chiral Triynes 214
3.4.1.2.2 Control of Central Chirality 216
3.4.1.2.2.1 Intramolecular Cyclotrimerization of Allenediynes 216
3.4.1.2.3 Control of Axial Chirality 216
3.4.1.2.3.1 Carbocyclization of Acetylene and Aryl-Substituted Monoynes Bearing Phosphoryl Moieties 216
3.4.1.2.3.2 Carbocyclization of 1,7-Diynes with Nitriles 218
3.4.1.3 Rhodium(I)-Mediated [2 + 2 + 2] Carbocyclizations 219
3.4.1.3.1 Control of Central Chirality 220
3.4.1.3.1.1 Carbocyclization of Tertiary Propargylic Alcohols, Bispropargylic Alcohols, and Dialkynylphosphine Oxides with 1,6-Diyne Esters 220
3.4.1.3.1.2 Carbocyclization of 1,6-Diynes with Substituted Alkenes 223
3.4.1.3.1.3 Carbocyclization of 1,6-Diynes with Electron-Deficient Ketones 226
3.4.1.3.1.4 Carbocyclization of 1,6-Enynes and Alkynes 226
3.4.1.3.1.5 Carbocyclization of 1,6-Enynes with Electron-Deficient Ketones 228
3.4.1.3.1.6 Cocyclization of Alkenyl Isocyanates and Terminal Alkynes 230
3.4.1.3.1.7 Cocyclization of Alkenyl Carbodiimides and Terminal Alkynes 232
3.4.1.3.1.8 Intramolecular Carbocyclization of Enediynes 234
3.4.1.3.1.9 Intramolecular Carbocyclization of Dienynes 235
3.4.1.3.1.10 Intramolecular Carbocyclization of 1,n-Dienynes (n = 4--6) 236
3.4.1.3.2 Control of Helical Chirality 239
3.4.1.3.2.1 Cocyclization of Tetraynes with Diynes 239
3.4.1.3.2.2 Intramolecular Carbocyclization of Triynes 240
3.4.1.3.3 Control of Axial Chirality 241
3.4.1.3.3.1 Cyclotrimerization of Internal Alkynes 241
3.4.1.3.3.2 Cocyclization of 1,6-Diynes and Alkynes 242
3.4.1.3.3.3 Double Cocyclization of 1,6-Diynes with 1,3-Diynes 245
3.4.1.3.3.4 Cocarbocyclization of 1,6-Diynes with Ynamides 246
3.4.1.3.3.5 Cocarbocyclization of 1,6-Diynes with trans-Alkenes 249
3.4.1.3.3.6 Cocarbocyclization of 1,6-Diynes with Isocyanates 250
3.4.1.3.3.7 Cocyclization of 1,7-Diynes and Internal Alkynes 251
3.4.1.3.3.8 Intramolecular Cyclotrimerization of Enediynes and Dienynes 252
3.4.1.2.3.9 Intramolecular Cyclotrimerization of Bis(diynyl)malononitriles 254
3.4.1.3.4 Control of Planar Chirality 254
3.4.1.3.4.1 Cocyclization of Internal Diynes and Di-tert-butyl Acetylenedicarboxylate 254
3.4.1.3.4.2 Intramolecular Cyclotrimerization of Triynes 256
3.4.1.4 Iridium(I)-Mediated [2 + 2 + 2] Carbocyclizations 257
3.4.1.4.1 Control of Axial Chirality 257
3.4.1.4.1.1 Cocyclization of 1,n-Diynes and Internal Alkynes 257
3.4.1.4.1.2 Intramolecular Cyclotrimerization of Triynes and Hexaynes 260
3.4.1.5 Nickel(0)-Mediated [2 + 2 + 2] Carbocyclizations 262
3.4.1.5.1 Control of Diastereoselectivity 262
3.4.1.5.1.1 Cocyclization between 1,6-Diynes and Activated Alkenes 262
3.4.1.5.1.2 Cocyclization between Norbornadiene and Activated Alkenes 263
3.4.1.5.2 Control of Central Chirality 264
3.4.1.5.2.1 Intermolecular Cyclotrimerization between Two Alkynes and an Alkene 264
3.4.1.5.2.2 Bimolecular Cocyclization of Diynes and Acetylene 265
3.4.1.5.3 Control of Helical Chirality 266
3.4.1.5.3.1 Cycloisomerization of Triynes 266
3.4.1.6 Palladium(0)-Mediated [2 + 2 + 2] Carbocyclizations 267
3.4.1.6.1 Control of Helical Chirality 267
3.4.1.6.1.1 Carbocyclization of Arynes with Alkynes 267
3.4.2 [3 + 2 + 2]-Carbocyclization Reactions 268
3.4.2.1 Ruthenium(II)-Mediated [3 + 2 + 2]-Carbocyclization Reactions 270
3.4.2.1.1 Cocyclizations between an .3-Allylruthenium(II) Complex and Alkynes 270
3.4.2.2 Cobalt(III)-Mediated [3 + 2 + 2]-Carbocyclization Reactions 272
3.4.2.2.1 Cocyclizations between .3-Allyl-Type Cobalt Complexes and Alkynes 272
3.4.2.3 Rhodium(I)-Mediated [3 + 2 + 2]-Carbocyclization Reactions 275
3.4.2.3.1 Cocyclizations between Alk-6-enylidenecyclopropanes and Activated Alkynes 275
3.4.2.4 Iridium(III)-Mediated [3 + 2 + 2]-Carbocyclization Reactions 276
3.4.2.4.1 Cocyclizations between .3-Allyliridium Complexes and Alkynes 276
3.4.2.5 Nickel(0)-Mediated [3 + 2 + 2]-Carbocyclization Reactions 277
3.4.2.5.1 Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes or Diynes 277
3.4.2.5.2 Cocyclization of Chromium Fischer Carbene Complexes with Terminal Alkynes 278
3.4.3 [4 + 2 + 2]-Carbocyclization Reactions 279
3.4.3.1 Cobalt-Mediated [4 + 2 + 2]-Carbocyclization Reactions 281
3.4.3.1.1 Cocyclization of Norbornadiene with 2-Substituted Buta-1,3-dienes 281
3.4.3.2 Rhodium(I)-Mediated [4 + 2 + 2]-Carbocyclization Reactions 283
3.4.3.2.1 Cocyclization of Enynes with Buta-1,3-dienes 283
3.4.3.2.2 Cocyclization of Dienynes with Alkynes 285
3.4.3.2.3 Cocyclization of Enedienes with Alkynes 287
3.4.3.2.4 Cocyclization of Dienyl Isocyanates with Alkynes 288
3.5 Asymmetric Cycloisomerizations 294
3.5.1 Enyne Cycloisomerization 294
3.5.1.1 Palladium-Catalyzed Cycloisomerization 295
3.5.1.2 Rhodium-Catalyzed Cycloisomerization 308
3.5.1.3 Gold- and Platinum-Catalyzed Cycloisomerization 318
3.5.2 Diene Cycloisomerization 328
3.5.2.1 Cycloisomerization of 1,6- and 1,7-Dienes 328
3.5.2.2 Cycloisomerization of 1,6- and 1,7-Allenenes 333
3.5.3 Carbonyl-Ene Reaction 336
3.5.4 Conia-Ene Reaction 339
3.5.5 Intramolecular Cyclization Initiated by C--H Activation 343
3.6 Ene Reactions 360
3.6.1 Intramolecular Ene Reactions 360
3.6.1.1 Aldehydes and Ketones as Enophiles (Carbonyl-Ene Reactions) 361
3.6.1.1.1 Type-I Cyclizations 361
3.6.1.1.1.1 Diastereoselective Reactions 361
3.6.1.1.1.2 Enantioselective Reaction of Aldehydes 362
3.6.1.1.1.3 Enantioselective Reaction of Ketones 363
3.6.1.1.2 Type-II Cyclizations 365
3.6.1.1.2.1 Diastereoselective Reactions 365
3.6.1.1.2.2 Enantioselective Reactions 366
3.6.1.2 Alkynes as Enophiles 367
3.6.1.2.1 Type-I Cyclizations 367
3.6.1.2.1.1 Enantioselective Reaction of 1,6-Enynes 367
3.6.1.2.1.2 Enantioselective Reaction of 1,7-Enynes 369
3.6.1.2.2 Conia-Ene Reactions 370
3.6.1.2.2.1 Enantioselective Reactions 370
3.6.2 Intermolecular Ene Reactions 371
3.6.2.1 Aldehydes and Ketones as Enophiles (Carbonyl-Ene Reactions) 372
3.6.2.1.1 Enantioselective Reaction of Aldehydes 372
3.6.2.1.1.1 Unactivated Alkenes as Ene Components 372
3.6.2.1.1.2 Enol Ethers as Ene Components 377
3.6.2.1.1.3 Enamides or Enecarbamates as Ene Components 379
3.6.2.1.2 Enantioselective Reaction of Ketones 381
3.6.2.1.2.1 Unactivated Alkenes as Ene Components 381
3.6.2.1.2.2 Activated Alkenes as Ene Components 383
3.6.2.2 Imines as Enophiles (Imino-Ene Reactions) 384
3.6.2.2.1 Enantioselective Reactions 384
3.6.2.2.1.1 Unactivated Alkenes as Ene Components 384
3.6.2.2.1.2 Enecarbamates as Ene Components 386
3.6.2.3 Electron-Deficient Alkenes as Enophiles 389
3.6.2.3.1 Enantioselective Reactions 389
3.6.2.3.1.1 Unactivated Alkenes as Ene Components 389
3.6.2.3.1.2 Enecarbamates as Ene Components 390
3.6.2.4 Heteroatom--Heteroatom Double Bonds as Enophiles 392
3.6.2.4.1 Enantioselective Reaction of Azodicarboxylates 392
3.6.2.4.1.1 Unactivated Alkenes as Ene Components 392
3.6.2.4.1.2 Enecarbamates as Ene Components 393
3.7 Sigmatropic Rearrangements 398
3.7.1 The Claisen Rearrangement 398
3.7.1.1 The Classic Claisen Rearrangement 404
3.7.1.2 The 3-Aza-Claisen Rearrangement 406
3.7.1.3 The Thio-Claisen Rearrangement 407
3.7.1.4 The Claisen Rearrangement of Chelated Enolates 408
3.7.1.5 The Carroll--Claisen Rearrangement 410
3.7.1.6 The Eschenmoser--Claisen Rearrangement 411
3.7.1.7 The Ireland--Claisen Rearrangement 413
3.7.1.8 The Johnson--Claisen Rearrangement 417
3.7.1.9 The Aromatic Claisen Rearrangement 419
3.7.2 The Cope Rearrangement and Related Reactions 420
3.7.2.1 The Classic Cope Rearrangement 422
3.7.2.2 The Anionic Oxy-Cope Rearrangement 423
3.7.2.3 The 2-Oxonia-Cope Rearrangement 425
3.7.2.4 The 2-Azonia-Cope Rearrangement 426
3.7.3 The [2,3]-Wittig Rearrangement 426
3.7.3.1 The Classic [2,3]-Wittig Rearrangement 428
3.7.3.2 The Enolate [2,3]-Wittig Rearrangement 431
3.8 Electrocyclic Reactions 434
3.8.1 Synthesis of Dienes through Electrocyclic Ring Opening of Cyclobutenes 434
3.8.2 Synthesis of Cyclobutenes through Electrocyclization of Dienes 436
3.8.3 Synthesis of Five-Membered Rings through Electrocyclization of Pentadienyl Cations: The Nazarov Cyclization 437
3.8.3.1 Stoichiometric Nazarov Cyclizations 437
3.8.3.2 Catalytic Nazarov Cyclizations 439
3.8.3.3 Interrupted Nazarov Cyclizations 442
3.8.4 Electrocyclizations of Hexatrienes and Octatetraenes 443
3.8.4.1 Electrocyclizations of 6p Systems 443
3.8.4.2 Electrocyclizations of 8p Systems 449
3.9 Allylic Substitution Reactions 454
3.9.1 C--C Bond-Forming Reactions 457
3.9.1.1 Enantioselective Reactions with Achiral Electrophiles and Symmetric Intermediate p-Allyl Complexes 457
3.9.1.1.1 Palladium-Catalyzed Reactions 457
3.9.1.1.2 Copper-Catalyzed Reactions 460
3.9.1.1.3 Molybdenum-Catalyzed Reactions 462
3.9.1.1.4 Iridium-Catalyzed Reactions 465
3.9.1.2 Dynamic Kinetic Asymmetric Resolution 467
3.9.1.2.1 Palladium-Catalyzed Reactions 467
3.9.1.2.2 Molybdenum-Catalyzed Reactions 468
3.9.1.3 Stereospecific Allylic Substitution with Chiral Electrophiles 470
3.9.1.3.1 Rhodium-Catalyzed Reactions 470
3.9.2 C--N Bond-Forming Reactions 473
3.9.2.1 Enantioselective Reactions with Achiral Electrophiles and Symmetric Intermediate p-Allyl Complexes 473
3.9.2.1.1 Palladium-Catalyzed Reactions 473
3.9.2.1.2 Iridium-Catalyzed Reactions 476
3.9.2.2 Dynamic Kinetic Asymmetric Resolution 478
3.9.2.2.1 Palladium-Catalyzed Reactions 478
3.9.2.3 Stereospecific Allylic Substitution with Chiral Electrophiles 480
3.9.2.3.1 Rhodium-Catalyzed Reactions 480
3.9.3 C--O Bond-Forming Reactions 482
3.9.3.1 Enantioselective Reactions with Achiral Electrophiles and Symmetric Intermediate p-Allyl Complexes 482
3.9.3.1.1 Palladium-Catalyzed Reactions 482
3.9.3.1.2 Iridium-Catalyzed Reactions 484
3.9.3.2 Dynamic Kinetic Asymmetric Resolution 486
3.9.3.2.1 Palladium-Catalyzed Reactions 486
3.9.3.3 Stereospecific Allylic Substitution with Chiral Electrophiles 488
3.9.3.3.1 Rhodium-Catalyzed Reactions 488
3.10 Isomerizations To Form a Stereogenic Center and Allylic Rearrangements 494
3.10.1 Synthesis by Rearrangement 494
3.10.1.1 [3,3]-Sigmatropic Rearrangements 494
3.10.1.1.1 Claisen Rearrangement 494
3.10.1.1.2 Meerwein--Eschenmoser--Claisen Rearrangement 497
3.10.1.1.3 Carroll Rearrangement 498
3.10.1.1.4 Aza-Claisen Rearrangement 499
3.10.1.1.4.1 Using Benzimidate Substrates 500
3.10.1.1.4.2 Using Trichloroacetimidate Substrates 501
3.10.1.1.4.3 Using Trifluoroacetimidate Substrates 503
3.10.1.1.4.4 Using Miscellaneous Substrates 508
3.10.1.1.5 Miscellaneous Rearrangements 508
3.10.1.1.5.1 Thia-Claisen Rearrangement 508
3.10.1.1.5.2 Aza-Phospha-Oxa-Cope Rearrangement 509
3.10.1.2 [2,3]-Sigmatropic Rearrangements 510
3.10.2 Synthesis by Isomerization and Migration 511
3.10.2.1 Double-Bond Isomerization 511
3.10.2.1.1 Isomerization of Allylic Amines to Enamines 511
3.10.2.1.2 Isomerization of Allylic Alcohols to Aldehydes 512
3.10.2.2 Wagner--Meerwein Rearrangement 513
3.10.3 Tandem Reactions Involving an Isomerization or Rearrangement 515
3.10.3.1 Domino Reactions 515
3.10.3.1.1 Claisen Rearrangement/Intramolecular Carbonyl-Ene Reaction 515
3.10.3.1.2 Ketene Addition/Acyl Claisen Rearrangement 515
3.11 Allylic and Benzylic Oxidation 520
3.11.1 Allylic Oxidation 521
3.11.1.1 Oxidation To Afford Allylic Alcohols and Derivatives 521
3.11.1.1.1 Reaction with Selenium Dioxide 521
3.11.1.1.2 Reaction with Palladium/Quinone/Oxygen Reagents 522
3.11.1.1.3 Reaction with Copper/Perester Reagents 524
3.11.1.2 Oxidation To Afford Enones 527
3.11.2 Benzylic Oxidation 530
3.11.2.1 Oxidation To Afford Benzylic Alcohols and Derivatives 530
3.11.2.2 Oxidation To Afford Lactones and Aldehydes 531
3.12 Mizoroki--Heck Reaction 534
3.12.1 Intermolecular Reactions 534
3.12.1.1 Regioselective Reactions 534
3.12.1.1.1 Reaction of Electron-Poor Alkenes 536
3.12.1.1.2 Reaction of Electron-Rich Alkenes 540
3.12.1.1.3 Chelation-Controlled Reactions 542
3.12.1.2 Asymmetric Reactions 546
3.12.2 Intramolecular Reactions 548
3.12.2.1 Formation of Tertiary Carbon Centers 551
3.12.2.1.1 6,6-Ring System Formation 551
3.12.2.1.2 6,5-Ring System Formation 553
3.12.2.1.3 5,5-Ring System Formation 554
3.12.2.2 Formation of Quaternary Carbon Centers 556
3.12.2.2.1 6,6-Ring System Formation 556
3.12.2.2.2 6,5-Ring System Formation 558
3.12.2.2.3 6,6,6-Ring System Formation 560
3.12.2.2.4 Spirocyclic System Formation 560
3.13 C--C Bond Formation by C--H Bond Activation 564
3.13.1 Intramolecular C--C Bond Formation by C--H Activation 566
3.13.1.1 Intramolecular Activation of sp3 C--H Bonds 566
3.13.1.1.1 Synthesis of Carbocycles by Activation of sp3 C--H Bonds 566
3.13.1.1.1.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 566
3.13.1.1.2 Intramolecular Synthesis of Lactones by Activation of sp3 C--H Bonds 570
3.13.1.1.2.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 570
3.13.1.1.3 Intramolecular Synthesis of Lactams by Activation of sp3 C--H Bonds 573
3.13.1.1.3.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 573
3.13.1.2 Intramolecular Activation of sp2 C--H Bonds 575
3.13.1.2.1 Synthesis of Carbocyclic Derivatives by Activation of sp2 C--H Bonds 575
3.13.1.2.1.1 Directed sp2 C--H Bond Insertion 575
3.13.1.2.2 Synthesis of Oxygen Heterocycles by Activation of sp2 C--H Bonds 581
3.13.1.2.2.1 Directed sp2 C--H Bond Insertion 581
3.13.1.2.2.2 Oxidative Palladium(II)-Catalyzed sp2 C--H Bond Activation 584
3.13.1.2.3 Synthesis of Nitrogen Heterocycles by Activation of sp2 C--H Bonds 586
3.13.1.2.3.1 Directed sp2 C--H Bond Insertion 586
3.13.1.2.3.2 Oxidative Palladium(II)-Catalyzed sp2 C--H Bond Activation 588
3.13.1.3 Intramolecular Activation of Benzylic C--H Bonds 589
3.13.1.3.1 Synthesis of Carbocyclic Derivatives by Benzylic C--H Bond Insertion 589
3.13.1.3.1.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 589
3.13.1.3.2 Synthesis of Oxygen Heterocycles by Benzylic C--H Bond Insertion 590
3.13.1.3.2.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 591
3.13.1.3.3 Synthesis of Nitrogen Heterocycles by Benzylic C--H Bond Insertion 591
3.13.1.3.3.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 591
3.13.1.4 Intramolecular Activation of C--H Bonds a to Oxygen 592
3.13.1.4.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 592
3.13.1.5 Intramolecular Activation of C--H Bonds a to Nitrogen 593
3.13.1.5.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 594
3.13.2 Intermolecular C--C Bond Formation by C--H Activation 595
3.13.2.1 Intermolecular Activation of sp3 C--H bonds 596
3.13.2.1.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 596
3.13.2.2 Intermolecular Activation of sp2 C--H Bonds 598
3.13.2.2.1 Heteroatom-Directed C--H Functionalization 598
3.13.2.3 Intermolecular Activation of Benzylic C--H Bonds 602
3.13.2.3.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 602
3.13.2.4 Intermolecular Activation of Allylic C--H Bonds 604
3.13.2.4.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 604
3.13.2.5 Intermolecular Activation of C--H Bonds a to Oxygen 611
3.13.2.5.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 611
3.13.2.6 Intermolecular Activation of C--H Bonds a to Nitrogen 613
3.13.2.6.1 Dirhodium(II)-Catalyzed Carbene C--H Insertion 613
3.13.3 Conclusions 614
3.14 Cross Coupling 618
3.14.1 Asymmetric Synthesis of Tertiary Carbon Centers 620
3.14.1.1 Reaction of Secondary Organometallic Reagents with Organic Halides 620
3.14.1.2 Reaction of Organometallic Reagents with Secondary Organic Halides 626
3.14.2 Stereoselective Synthesis of Multisubstituted Alkenes 635
3.14.2.1 Reaction of gem-Dimetalated Alkenes with Organic Halides 635
3.14.2.2 Reaction of gem-Dihalogenated Alkenes with Organometallic Reagents 638
3.14.2.3 Reaction of vic-Dimetalated Alkenes with Organic Halides 646
3.14.2.4 Reaction of 1,2-Dihaloalk-1-enes with Organometallic Reagents 649
3.14.3 Stereoselective Synthesis of Alkenes Bearing a Chiral Center at the Allylic Position 651
3.14.3.1 Reaction of Achiral Allylic Metals with Organic Halides 651
3.14.3.2 Reaction of Chiral Allylic Metals with Organic Halides 652
3.14.4 Asymmetric Synthesis of Optically Active Allenes 654
3.14.4.1 Reaction of Propargylic Carbonates or Sulfonates with Organometallic Reagents 654
3.14.4.2 Reaction of 2-Bromo-Substituted 1,3-Dienes with Organometallic Reagents 655
3.14.5 Asymmetric Synthesis of Biaryls 656
3.14.5.1 Reaction of Arylmetals with Aryl Halides 656
3.14.5.2 Reaction of Dihalobiaryls with Organometallic Reagents 660
3.15 Protonation, Alkylation, Arylation, and Vinylation of Enolates 666
3.15.1 Enantioselective Protonation of Enolates 666
3.15.1.1 Biocatalytic Enantioselective Protonation 666
3.15.1.1.1 Hydrolysis of Enol Esters 667
3.15.1.1.2 Decarboxylative Protonation of Malonic Acids 668
3.15.1.2 Protonation of Enolates with Chiral Proton Donors 669
3.15.1.2.1 Using ß-Hydroxy Sulfoxide Brønsted Acids 669
3.15.1.2.2 Using Lewis Acid Activated Brønsted Acids 671
3.15.1.3 Protonation of Enolates with Chiral Proton Acceptors 673
3.15.2 Alkylation of Enolates 677
3.15.2.1 Alkylation of Amide Enolates via Chiral Auxiliaries 677
3.15.2.1.1 Using Oxazolidinone Auxiliaries 677
3.15.2.1.2 Using Camphorsultam Auxiliaries 679
3.15.2.1.3 Using Pseudoephedrine Auxiliaries 680
3.15.2.2 Alkylation of Enolates via Chiral Metalloenamines 685
3.15.2.2.1 Using Imine-Type Auxiliaries 685
3.15.2.2.2 Using Hydrazone-Type Auxiliaries 687
3.15.2.3 Alkylation of Enolates with Chiral Counterions 689
3.15.2.4 Alkylation of Enolates via Chiral Transition-Metal Catalysts 693
3.15.2.4.1 Decarboxylative Allylic Alkylation of Enol Carbonates and Silanes with Palladium Catalysts 694
3.15.2.4.2 Decarboxylative Allylic Alkylation of ß-Keto Esters with Palladium Catalysts 696
3.15.2.4.3 Decarboxylative Conjugate Addition/Allylic Alkylation Cascades with Palladium Catalysts 698
3.15.2.4.4 Alkylation of Tin Enolates Using Chromium Catalysts 700
3.15.2.4.5 Alkylation of a-Bromoamides Using Nickel Catalysts 701
3.15.3 Arylation of Enolates 703
3.15.3.1 Arylation of Enolates via Chiral Auxiliary Control 703
3.15.3.2 Arylation of Enolates with Aryl Halides and Trifluoromethanesulfonates Using Chiral Transition-Metal Catalysts 706
3.15.3.2.1 Palladium- and Nickel-Catalyzed Arylation with Aryl Halides 707
3.15.3.2.2 Palladium- and Nickel-Catalyzed Arylation with Aryl Trifluoromethanesulfonates 709
3.15.3.3 Nickel-Catalyzed Arylations with Arylmetals 710
3.15.3.3.1 Hiyama-Type Arylation of Esters 711
3.15.3.3.2 Negishi-Type Arylation of Ketones 712
3.15.3.3.3 Kumada-Type Arylation of Ketones 713
3.15.3.3.4 Suzuki-Type Arylation of Amides 716
3.15.4 Vinylation of Enolates 717
3.15.4.1 Vinylation of Enolates via Chiral Auxiliary Control 717
3.15.4.2 Vinylation of Enolates via Chiral Transition-Metal Catalysts 718
3.15.4.2.1 Palladium-Catalyzed Vinylation with Vinyl Halides 718
3.15.4.2.2 Nickel-Catalyzed Vinylation with Vinylsilanes 720
3.15.4.2.3 Nickel-Catalyzed Vinylation with Vinylzirconocenes 720
3.16 a-Functionalization of Carbonyl Compounds 726
3.16.1 Enamine-Mediated Enantioselective Aldol and Mannich Processes 729
3.16.1.1 Aldol Processes 729
3.16.1.1.1 Aldol Processes with Aldehyde Donors 730
3.16.1.1.1.1 Intramolecular Aldol Reactions 730
3.16.1.1.1.2 Intermolecular Aldol Reactions 731
3.16.1.1.2 Aldol Processes with Ketone Donors 735
3.16.1.1.2.1 Intramolecular Aldol Reactions 735
3.16.1.1.2.2 Intermolecular Aldol Reactions 738
3.16.1.2 Mannich Processes 743
3.16.1.2.1 Mannich Processes with Preformed Imines 743
3.16.1.2.2 Direct (Three-Component) Mannich Processes 747
3.16.2 Enamine-Mediated Enantioselective a-Functionalization 749
3.16.2.1 a-Halogenation Reactions 750
3.16.2.1.1 a-Fluorination Reactions 750
3.16.2.1.2 a-Chlorination Reactions 752
3.16.2.1.3 a-Bromination Reactions 754
3.16.2.2 a-Oxidation Reactions 756
3.16.2.2.1 a-Oxidation Reactions Using Nitrosobenzene 756
3.16.2.2.2 a-Oxidation Reactions Using Dibenzoyl Peroxide 758
3.16.2.2.3 a-Oxidation Reactions Using Molecular Oxygen 759
3.16.2.3 a-Amination Reactions 761
3.16.2.3.1 a-Amination Reactions Using Azodicarboxylates 761
3.16.2.3.2 a-Amination Reactions Using Nitrosobenzene 765
3.16.2.4 a-Sulfanylation Reactions 766
3.16.2.5 a-Selanylation Reactions 767
3.16.2.6 a-Alkylation Reactions 768
3.16.2.6.1 a-Alkylation Reactions Using Alkyl Halides 768
3.16.2.6.2 a-Alkylation Reactions Using Michael Acceptors 769
3.16.2.7 a-Arylation Reactions 773
3.16.3 OrganoSOMO Mediated Enantioselective a-Functionalization 775
3.16.3.1 a-Allylation Reactions 776
3.16.3.2 a-Enolation Reactions 777
3.16.3.3 a-Vinylation Reactions 778
3.16.3.4 a-Homobenzylation Reactions 779
3.16.3.5 a-Nitroalkylation Reactions 780
3.16.3.6 a-Arylation Reactions 782
3.16.3.7 a-Oxidation Reactions 785
3.16.3.8 a-Chlorination Reactions 786
3.16.4 Photoredox Organocatalysis Mediated Enantioselective a-Functionalization 787
3.16.4.1 a-Alkylation Reactions 788
3.16.4.2 a-Perfluoroalkylation Reactions 790
3.17 Baeyer--Villiger Reactions 798
3.17.1 Chemical Methods 799
3.17.1.1 Reactions Promoted by Chiral Metal Catalysts 799
3.17.1.2 Reactions Promoted by Organic Catalysts 801
3.17.1.3 Reactions Using Stoichiometric Chiral Oxidants 802
3.17.2 Biochemical Methods 803
3.17.2.1 Reactions Using Whole-Cell Cultures 803
3.17.2.2 Reactions Using Purified Enzymes 804
3.17.2.3 Reactions Using Engineered Organisms 805
3.18 Ring Opening of Epoxides, Aziridines, and Cyclic Anhydrides 810
3.18.1 Ring Opening of Epoxides 810
3.18.1.1 Enantioselective Ring Opening of meso-Epoxides 811
3.18.1.1.1 Reaction with Oxygen Nucleophiles 811
3.18.1.1.1.1 Using Water 811
3.18.1.1.1.2 Using Alcohols 812
3.18.1.1.1.3 Using Carboxylic Acids 814
3.18.1.1.2 Reaction with Nitrogen Nucleophiles 815
3.18.1.1.2.1 Using Amines 815
3.18.1.1.2.2 Using Azides 817
3.18.1.1.3 Reaction with Sulfur Nucleophiles 819
3.18.1.1.4 Reaction with Halide Nucleophiles 821
3.18.1.1.5 Reaction with Carbon Nucleophiles 824
3.18.1.1.5.1 Using Indole 824
3.18.1.1.5.2 Using Cyanide 825
3.18.1.1.6 Reaction with Selenium Nucleophiles 826
3.18.1.1.7 Isomerization 827
3.18.1.2 Kinetic Resolution in Epoxide Ring-Opening Reactions 828
3.18.1.2.1 Reaction with Oxygen Nucleophiles 829
3.18.1.2.2 Reaction with Nitrogen Nucleophiles 830
3.18.1.2.3 Reaction with Chloride 832
3.18.1.2.4 Reaction with Carbon Nucleophiles 833
3.18.1.2.4.1 Using Indoles 833
3.18.1.2.4.2 Using Stabilized Enolates 834
3.18.1.2.5 Isomerization 836
3.18.1.3 Stereospecific and Regioselective Ring Opening of Epoxides 837
3.18.1.3.1 Reaction with Oxygen Nucleophiles 837
3.18.1.3.2 Reaction with Nitrogen Nucleophiles 838
3.18.1.3.3 Reaction with Sulfur Nucleophiles 840
3.18.1.3.4 Reaction with Halide Nucleophiles 841
3.18.1.3.5 Reaction with Carbon Nucleophiles 842
3.18.1.3.6 Reaction with Miscellaneous Nucleophiles 846
3.18.2 Ring Opening of Aziridines 849
3.18.2.1 Enantioselective Ring Opening of meso-Aziridines 849
3.18.2.1.1 Reaction with Nitrogen Nucleophiles 849
3.18.2.1.1.1 Using Amines 849
3.18.2.1.1.2 Using Azides 852
3.18.2.1.2 Reaction with Sulfur Nucleophiles 856
3.18.2.1.3 Reaction with Chloride 857
3.18.2.1.4 Reaction with Carbon Nucleophiles 858
3.18.2.1.4.1 Using Cyanide 858
3.18.2.1.4.2 Using Stabilized Enolates 860
3.18.2.2 Regioselective and Stereospecific Ring Opening of Aziridines 861
3.18.2.2.1 Reaction with Oxygen Nucleophiles 861
3.18.2.2.2 Reaction with Nitrogen Nucleophiles 862
3.18.2.2.3 Reaction with Halide Nucleophiles 863
3.18.2.2.4 Reaction with Sulfur Nucleophiles 864
3.18.2.2.5 Reaction with Carbon Nucleophiles 865
3.18.2.2.6 Reaction with Miscellaneous Nucleophiles 867
3.18.3 Ring Opening of Cyclic Anhydrides 867
3.18.3.1 Reaction with Oxygen Nucleophiles 868
3.18.3.2 Reaction with Sulfur Nucleophiles 870
3.18.3.3 Reaction with Carbon Nucleophiles 871
3.19 Acylation of Alcohols and Amines 880
3.19.1 Asymmetric Acylation of Alcohols 880
3.19.1.1 Kinetic Resolution of Racemic Secondary Alcohols by Catalytic Asymmetric Acylation 880
3.19.1.1.1 Asymmetric Acylation with Anhydrides 881
3.19.1.1.1.1 Asymmetric Acylation of Aryl Alkyl Carbinols 882
3.19.1.1.1.2 Asymmetric Acylation of Allylic Alcohols 883
3.19.1.1.1.3 Asymmetric Acylation of Propargylic Alcohols 885
3.19.1.1.2 Asymmetric Acylation with Acid Chlorides 886
3.19.1.1.3 Asymmetric Acylation with Carboxylic Acids 889
3.19.1.2 Desymmetrization of meso-Diols by Catalytic Asymmetric Acylation 891
3.19.1.2.1 Asymmetric Acylation of meso-1,2-Diols 891
3.19.1.2.2 Asymmetric Acylation of Symmetrical 1,3-Diols 892
3.19.1.2.3 Asymmetric Acylation of cis-Cyclopent-4-ene-1,3-diols 893
3.19.1.2.4 Asymmetric Acylation of meso-1,5-Diols 895
3.19.2 Asymmetric Acylation of Amines 895
3.19.2.1 Asymmetric Acylation of Primary Amines 895
3.19.2.2 Asymmetric Acylation of Secondary Amines 897
3.20 Asymmetric Fluorination, Monofluoromethylation, Difluoromethylation, and Trifluoromethylation Reactions 902
3.20.1 Stereoselective Fluorination 903
3.20.1.1 Stereoselective Electrophilic Fluorination 903
3.20.1.1.1 Diastereoselective Electrophilic Fluorination 904
3.20.1.1.1.1 Preparation of a-Fluoro Ketones from a-Silyl Ketones 904
3.20.1.1.1.2 Preparation of a-Fluoro Carboxylic Acids, ß-Fluoro Alcohols, a-Fluoro Aldehydes, a-Fluoro Ketones, and .-Lactones from Carboxylic Acids 906
3.20.1.1.1.3 Preparation of a-Fluoro Phosphonic Acids 908
3.20.1.1.1.4 Preparation of Monofluoro Ketomethylene Dipeptide Isosteres 910
3.20.1.1.1.5 Preparation of Allylic Fluorides 911
3.20.1.1.1.6 Preparation of Fluorinated Tetrahydrofurans 913
3.20.1.1.2 Enantioselective Electrophilic Fluorination 914
3.20.1.1.2.1 Reagent-Controlled Enantioselective Fluorination 914
3.20.1.1.2.1.1 Preparation of a-Fluorinated a-Cyano Esters 915
3.20.1.1.2.1.2 Preparation of Fluorinated Keto Esters, Indolones, and Allylsilanes 916
3.20.1.1.2.2 Catalytic Enantioselective Fluorination 918
3.20.1.1.2.2.1 Catalytic Asymmetric Fluorination Mediated by Chiral Metal Complexes 919
3.20.1.1.2.2.1.1 Fluorination of ß-Keto Esters and Lactones with Palladium Catalysts 920
3.20.1.1.2.2.1.2 Fluorination of ß-Oxo Phosphonates with Palladium Catalysts 921
3.20.1.1.2.2.1.3 Fluorination of a-Cyano tert-Butyl Esters with Palladium Catalysts 922
3.20.1.1.2.2.1.4 Fluorination of Indolones with Palladium Catalysts 923
3.20.1.1.2.2.1.5 Fluorination of a-Aryl Acetic Acid Derivatives with Nickel Catalysts 924
3.20.1.1.2.2.1.6 Enantioselective Fluorination of 1,3-Dicarbonyl Derivatives Capable of Two-Point Binding with Nickel Catalysts 925
3.20.1.1.2.2.1.7 Sequential Nazarov--Fluorination with Copper Catalysts 927
3.20.1.1.2.2.2 Catalytic Enantioselective Fluorination Mediated by Organocatalysts 929
3.20.1.1.2.2.2.1 Organocatalytic Fluorination of Aldehydes: Preparation of a-Fluoro Aldehydes, ß-Fluoro Alcohols, and Propargylic Fluorides 929
3.20.1.1.2.2.2.2 Catalytic Asymmetric Fluorodesilylation of Allylsilanes, Silyl Enol Ethers, and Indolones 932
3.20.1.1.2.2.2.3 Preparation of Fluorinated Flavanones 935
3.20.1.1.2.2.2.4 Asymmetric Fluorination with Chiral Bifunctional Phase-Transfer Catalysts 936
3.20.1.1.2.2.3 Catalytic Enantioselective Fluorination Mediated by Metals and Organocatalysts 938
3.20.1.2 Stereoselective Nucleophilic Fluorination 939
3.20.1.2.1 Prins Cyclization To Access Fluorinated Tetrahydrothiopyrans, Thiacyclohexanes, and Piperidines 939
3.20.1.2.2 Catalytic Asymmetric Ring Opening of Achiral Epoxides 940
3.20.2 Stereoselective Fluoroalkylation 942
3.20.2.1 Monofluoromethylation Reactions 942
3.20.2.1.1 Diastereoselective Nucleophilic Monofluoromethylation 943
3.20.2.1.1.1 Preparation of Chiral a-Monofluoromethyl Amines Using Fluoromethyl Phenyl Sulfone 943
3.20.2.1.2 Catalytic Enantioselective Nucleophilic Monofluoromethylation 946
3.20.2.1.2.1 Preparation of a-Monofluoromethylated Amines 946
3.20.2.1.2.2 Preparation of ß-Monofluoromethylated Ketones and .-Monofluoromethylated Alcohols 948
3.20.2.1.2.3 Asymmetric Allylic Monofluoromethylation 951
3.20.2.2 Difluoromethylation Reactions 953
3.20.2.2.1 Diastereoselective Nucleophilic Difluoromethylation 954
3.20.2.2.1.1 Preparation of Homochiral a- and ß-Difluoromethyl Amines 954
3.20.2.2.1.2 Preparation of Chiral Difluoromethylated 1,3-Diols 959
3.20.2.2.2 Electrophilic and Radical Difluoromethylation 960
3.20.2.3 Trifluoromethylation Reactions 961
3.20.2.3.1 Diastereoselective Nucleophilic Trifluoromethylation 961
3.20.2.3.1.1 Trifluoromethylation of Carbohydrates 961
3.20.2.3.1.2 Trifluoromethylation of Steroidal Derivatives 963
3.20.2.3.1.3 Asymmetric Synthesis of Trifluoromethylated Aldehydes, Diols, Amino Alcohols, and Triols 965
3.20.2.3.1.3.1 Trifluoromethylated Aldehydes, 1,2-Diols, and 1,2-Amino Alcohols 965
3.20.2.3.1.3.2 Asymmetric Synthesis of 2-(Trifluoromethyl)-1,2,3-triols 967
3.20.2.3.1.4 Asymmetric Synthesis of Trifluoromethylated Amines and Diamines 969
3.20.2.3.2 Enantioselective Trifluoromethylation 971
3.20.2.3.2.1 Nucleophilic Trifluoromethylation of Aryl Ketones, Aryl Aldehydes, and Azomethine Imines 971
3.20.2.3.2.2 Electrophilic Trifluoromethylation of ß-Keto Esters 974
3.20.2.3.2.3 Asymmetric Radical a-Trifluoromethylation of Aldehydes 975
3.21 Stereoselective Polymerization 982
3.21.1 Stereoselective Polymerization of Propene: Isotactic Polypropene Syndiotactic Polypropene
3.21.1.1 Isotactic Polypropene 983
3.21.1.2 Syndiotactic Polypropene 984
3.21.2 Stereoselective Polymerization of Higher Alk-1-enes: Isotactic Poly(hex-1-ene) and Poly(oct-1-ene) Syndiotactic Poly(hex-1-ene) and Poly(oct-1-ene)
3.21.2.1 Isotactic Poly(alk-1-ene)s 985
3.21.2.2 Syndiotactic Poly(alk-1-ene)s 987
3.21.3 Stereoselective (Co)Polymerization of Styrene: Isotactic and Syndiotactic Polystyrenes 987
3.21.3.1 Isotactic Polystyrene 988
3.21.3.2 Syndiotactic Polystyrene 989
3.21.4 Stereoselective Polymerization of Cycloalkenes: alt-cis/trans-1,3-Poly(cyclopentene) 990
3.21.4.1 Polycycloalkenes 990
3.21.4.1.1 Poly(cyclopentene)s 991
3.21.5 Stereoselective Polymerization of Linear Conjugated Dienes: cis- and trans-1,4-Polybutadiene and -Polyisoprene Syndiotactic 1,2-Polybutadiene
3.21.5.1 cis-1,4-Polybutadiene and -Polyisoprene 993
3.21.5.2 trans-1,4-Polybutadiene and -Polyisoprene 993
3.21.5.3 Syndiotactic 1,2-Polybutadiene 994
3.21.5.4 Isotactic 3,4-Polyisoprene 994
3.21.6 Stereoselective Polymerization of Cyclic Conjugated Dienes: cis-1,4-Poly(cyclohexa-1,3-diene) 995
3.21.7 Stereoselective Cyclopolymerization of Nonconjugated Dienes: Isotactic and Syndiotactic cis/trans-Poly(hexa-1,5-diene) 996
3.21.7.1 Poly(methylene-1,3-cyclopentane) from Hexa-1,5-diene 997
3.21.8 Stereoselective Ring-Opening Metathesis Polymerization of Cyclic Alkenes: cis-Isotactic and cis-Syndiotactic Poly(norbornene) and Poly(endo-dicyclopentadiene) Tactic trans-Poly(3-substituted cyclopropene)
3.21.8.1 Polymers of Cyclic Alkenes 998
3.21.8.1.1 Poly(norbornene)s and Poly(norbornadiene)s 998
3.21.8.1.2 Poly(endo-dicyclopentadiene)s 1000
3.21.8.1.3 Poly(3-substituted cyclopropene)s 1002
3.21.9 Stereoselective Polymerization of Alkynes 1002
3.21.9.1 Poly(acetylene) 1003
3.21.9.2 Substituted Poly(acetylene)s 1004
3.21.10 Stereoselective Copolymerization of Alk-1-enes and Carbon Monoxide: Isotactic and Syndiotactic Polyketones Derived from Propene and Styrene 1005
3.21.10.1 Polyketones 1005
3.21.10.1.1 Isotactic Poly(propene-alt-carbon monoxide) 1006
3.21.10.1.2 Isotactic and Syndiotactic Poly(styrene-alt-carbon monoxide)s 1007
3.21.11 Stereoselective Polymerization of Acrylates: Syndiotactic, Isotactic, and Heterotactic Poly(alkyl methacrylate)s 1008
3.21.11.1 Isotactic Poly(alkyl methacrylate)s 1009
3.21.11.2 Syndiotactic Poly(alkyl methacrylate)s 1009
3.21.11.3 Heterotactic Poly(alkyl methacrylate)s 1010
3.21.12 Stereoselective Polymerization of Racemic and Meso Epoxides and Their Copolymerization with Carbon Dioxide: Optically Active Isotactic Polyethers and Polycarbonates 1011
3.21.12.1 Isotactic Polyethers 1012
3.21.12.2 Stereoregular Polycarbonates 1014
3.21.12.2.1 Isotactic Poly(cycloalkene carbonate)s 1014
3.21.12.2.2 Syndiotactic Poly(cycloalkene carbonate)s 1014
3.21.13 Stereoselective Ring-Opening Polymerization of Lactones: Isotactic, Stereoblock, Syndiotactic, and Heterotactic Poly(lactide)s Syndiotactic Poly(3-Hydroxybutanoate)
3.21.13.1 Poly(lactide)s 1015
3.21.13.1.1 Isotactic Poly(lactide) 1016
3.21.13.1.2 Stereoblock Isotactic Poly(lactide) 1016
3.21.13.1.3 Syndiotactic Poly(lactide) 1017
3.21.13.1.4 Heterotactic Poly(lactide) 1018
3.21.13.2 Poly(3-hydroxybutanoate) 1018
3.22 Oxidation of Sulfides 1024
3.22.1 Oxidation of Sulfides Using Achiral Reagents 1025
3.22.2 Chiral Metal Complex Catalyzed Oxidation of Sulfides 1027
3.22.2.1 Catalysis Using Titanium/Chiral Diols 1027
3.22.2.1.1 Using Titanium(IV) Isopropoxide/(R,R)-Diethyl Tartrate 1027
3.22.2.1.2 Using Titanium(IV) Isopropoxide/1,1'-Bi-2-naphthol or Diols 1035
3.22.2.1.3 Using Titanium(IV) Isopropoxide/Chiral Alkyl Hydroperoxides 1039
3.22.2.2 Catalysis Using Titanium/Chiral Schiff Base Ligands 1040
3.22.2.3 Catalysis Using Vanadium/Chiral Schiff Base Ligands 1042
3.22.2.4 Catalysis Using Iron/Chiral Schiff Base Ligands 1046
3.22.2.5 Catalysis Using Aluminum/Salalen-Based Ligands 1050
3.22.2.6 Catalysis Using Chiral Molybdenum- and Niobium-Based Catalysts 1051
3.22.3 Organocatalytic Oxidation of Sulfides 1053
3.22.3.1 Using Chiral Oxaziridines and Oxaziridinium Salts 1053
3.22.3.2 Using a Chiral Ketone/Oxone System 1055
3.22.4 Biological Oxidation of Sulfides 1056
3.22.4.1 Oxidation Using Isolated Enzymes 1057
3.22.4.1.1 Using Peroxidases and Monooxygenases 1057
3.22.4.2 Oxidation Using Whole-Cell Systems 1061
Keyword Index 1068
Author Index 1132
Abbreviations 1164
List of All Volumes 1170

Table of Contents


Introduction

P. A. Evans

Introduction

3.1 [m+n]-Cycloaddition Reactions (Excluding [4+2])

G.-J. Jiang, Y. Wang, and Z.-X. Yu

3.1 [m+n]-Cycloaddition Reactions (Excluding [4+2])

3.1.1 [2+2]-Cycloaddition Reactions

3.1.1.1 [2+2] Cycloadditions Catalyzed by Transition Metals

3.1.1.1.1 Chiral Titanium Catalysts

3.1.1.1.2 Chiral Copper Catalysts

3.1.1.1.3 Chiral Rhodium Catalysts

3.1.1.1.4 Chiral Iridium Catalysts

3.1.1.2 [2+2] Cycloadditions Catalyzed by Organic Molecules

3.1.1.2.1 Lectka’s Quinine-Derived Catalysts

3.1.1.2.2 Fu’s 4-Pyrrolidinopyridine Catalysts

3.1.1.2.2.1 Asymmetric Staudinger Synthesis of β-Lactams

3.1.1.2.2.2 [2+2] Cycloadditions of Disubstituted Ketenes with Aldehydes

3.1.1.2.2.3 [2+2] Cycloadditions of Ketenes with Azo Compounds

3.1.1.2.2.4 [2+2] Cycloadditions of Ketenes with Nitroso Compounds

3.1.1.2.3 Corey’s Oxazaborolidine Catalysts

3.1.1.2.4 Ye’s N-Heterocyclic Carbene Catalysts

3.1.1.2.4.1 N-Heterocyclic Carbene Catalyzed Staudinger Reaction of Ketenes

3.1.1.2.4.2 N-Heterocyclic Carbene Catalyzed [2+2] Cycloadditions of Disubstituted Ketenes with 2-Oxoaldehydes

3.1.1.2.4.3 N-Heterocyclic Carbene Catalyzed [2+2] Cycloadditions of Ketenes with Ketones

3.1.1.2.4.4 N-Heterocyclic Carbene Catalyzed [2+2] Cycloadditions of Ketenes with Azodicarboxylates

3.1.2 [3+2]-Cycloaddition Reactions

3.1.2.1 Phosphine-Catalyzed [3+2]-Cycloaddition Reactions of Allenoates with Dienophiles

3.1.2.1.1 Cycloaddition Reactions Catalyzed by P-Chiral 7-Phosphabicyclo[2.2.1]heptane

3.1.2.1.2 Cycloaddition Reactions Catalyzed by Binaphthyl-Derived Phosphines

3.1.2.1.3 Cycloaddition Reactions Catalyzed by Amino Acid Based Phosphines

3.1.2.1.4 Cycloaddition Reactions Catalyzed by Planar-Chiral 2-Phospha[3]ferrocenophanes

3.1.2.1.5 Cycloaddition Reactions Catalyzed by Chiral Thiourea-Containing Phosphines

3.1.2.2 Palladium-Catalyzed Asymmetric [3+2] Trimethylenemethane Cycloaddition Reactions

3.1.3 [4+1]-Cycloaddition Reactions

3.1.3.1 Rhodium- and Platinum-Catalyzed Asymmetric [4+1]-Cycloaddition Reactions of Vinylallenes and Carbon Monoxide

3.1.3.2 Copper-Catalyzed Asymmetric [4+1] Cycloadditions of Enones with Diazo Compounds

3.1.4 [3+3]-Cycloaddition Reactions

3.1.4.1 Chiral Lewis Acid Catalyzed [3+3] Cycloadditions of Nitrones to Doubly Activated Cyclopropanes

3.1.4.2 Palladium-Catalyzed Asymmetric [3+3] Cycloadditions of Trimethylenemethane Derivatives with Nitrones

3.1.5 [4+3]-Cycloaddition Reactions

3.1.5.1 Asymmetric Organocatalysis of [4+3]-Cycloaddition Reactions of Allylic Cations and Dienes

3.1.5.2 Chiral Lewis Acid Catalyzed [4+3] Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations Derived from N-Allenylamides

3.1.5.3 Rhodium-Catalyzed Asymmetric [4+3] Cycloadditions between α-Diazo β ,γ-Unsaturated Esters and Dienes

3.1.5.4 Palladium-Catalyzed [4+3] Cycloadditions of γ-Methylene-δ-valerolactones

3.1.5.5 Palladium-Catalyzed [4+3] Intramolecular Cycloadditions of Alkylidenecyclopropanes and Dienes

3.1.6 [5+2]-Cycloaddition Reactions

3.1.6.1 Rhodium-Catalyzed Asymmetric [5+2] Cycloadditions of Vinylcyclopropanes and π-Systems

3.1.7 [6+3]-Cycloaddition Reactions

3.1.7.1 Palladium-Catalyzed Asymmetric [6+3] Cycloaddition of Trimethylenemethane with Tropones

3.2 [4+2]-Cycloaddition Reactions

K. Ishihara and A. Sakakura

3.2 [4+2]-Cycloaddition Reactions

3.2.1 Enantioselective Diels–Alder Reactions Catalyzed by Chiral Lewis Acids

3.2.1.1 Enantioselective Catalysis Using Chiral Boron Compounds

3.2.1.1.1 Using a Cationic Oxazaborolidine

3.2.1.1.2 Using Boronic Acid Esters of Chiral 3-(2-Hydroxyphenyl)binaphthols

3.2.1.2 Enantioselective Catalysis Using Chiral Copper(II) Complexes

3.2.1.2.1 Using a Chiral Copper(II)–Bis(4,5-dihydrooxazole) Complex

3.2.1.2.2 Using a Chiral Copper(II)–3-Arylalanine Amide Complex

3.2.1.2.3 Using a Copper(II)–DNA Complex

3.2.1.3 Enantioselective Catalysis Using Other Chiral Lewis Acids

3.2.2 Enantioselective Diels–Alder Reactions Catalyzed by Organoammonium Salts

3.2.2.1 Enantioselective Catalysis Using Chiral Secondary Ammonium Salts

3.2.2.2 Enantioselective Catalysis Using Chiral Primary Ammonium Salts

3.2.2.3 Enantioselective Catalysis Using Hydrogen-Bonded Complexes

3.2.3 Hetero-Diels–Alder Reactions

3.2.3.1 Enantioselective Hetero-Diels–Alder Reactions of Carbonyl Compounds

3.2.3.1.1 Enantioselective Catalysis Using a Chiral Chromium(III) Complex

3.2.3.1.2 Enantioselective Catalysis Using Other Chiral Lewis Acids

3.2.3.1.3 Enantioselective Catalysis Using Chiral Organocatalysts

3.2.3.2 Enantioselective Hetero-Diels–Alder Reactions of Imines and Related Compounds

3.2.3.2.1 Enantioselective Aza-Diels–Alder Reaction of Electron-Rich Dienes with Imines

3.2.3.2.2 Enantioselective Aza-Diels–Alder Reaction of 1-Azabuta-1,3-dienes

3.3 [m+n+1]-Carbocyclization Reactions

T. Shibata

3.3 [m+n+1]-Carbocyclization Reactions

3.3.1 [2+2+1] Carbocyclization of Enynes with Carbon Monoxide

3.3.1.1 Enantioselective Titanium-Catalyzed Pauson–Khand Reactions

3.3.1.2 Rhodium-Catalyzed Pauson–Khand Reactions

3.3.1.2.1 Enantioselective Reactions

3.3.1.2.2 Diastereoselective Reactions

3.3.1.3 Enantioselective Iridium-Catalyzed Pauson–Khand Reactions

3.3.1.4 Enantioselective Cobalt-Catalyzed Pauson–Khand Reactions

3.3.2 Rhodium-Catalyzed [2+2+1] Carbocyclization Using Aldehydes as a Carbon Monoxide Source

3.3.2.1 Enantioselective Rhodium-Catalyzed Reactions Using Aldehydes

3.3.3 Ruthenium-Catalyzed [3+2+1] Carbocyclization of Silylalkynes and Enones with Carbon Monoxide

3.3.4 Nickel-Catalyzed [4+2+1] Carbocyclization of Dienynes with Diazomethane

3.3.5 Rhodium-Catalyzed [5+2+1] Carbocyclization of Vinylcyclopropanes and Alkynes with Carbon Monoxide

3.3.6 Palladium-Catalyzed [4+4+1] Carbocyclization of Two Vinylallenes with Carbon Monoxide

3.4 [m+n+2]-Carbocyclization Reactions

C. Aubert, M. Malacria, and C. Ollivier

3.4 [m+n+2]-Carbocyclization Reactions

3.4.1 [2+2+2]-Carbocyclization Reactions

3.4.1.1 Ruthenium(II)–Mediated [2+2+2] Carbocyclizations

3.4.1.1.1 Control of Diastereoselectivity

3.4.1.1.1.1 Intramolecular Carbocyclization of Dienynes

3.4.1.2 Cobalt(I)-Mediated [2+2+2] Carbocyclizations

3.4.1.2.1 Control of Diastereoselectivity

3.4.1.2.1.1 Cocyclization of Alkynylboronates and Alkenes

3.4.1.2.1.2 Cocyclization of Diynes and Alkenes

3.4.1.2.1.3 Cocyclization of Yne-Heterocycles with Alkynes

3.4.1.2.1.4 Intramolecular Carbocyclization of Enediynes

3.4.1.2.1.5 Intramolecular Carbocyclization of Diynals and Diynones

3.4.1.2.1.6 Intramolecular Carbocyclization of Allenediynes

3.4.1.2.1.7 Intramolecular Cyclotrimerization of Chiral Triynes

3.4.1.2.2 Control of Central Chirality

3.4.1.2.2.1 Intramolecular Cyclotrimerization of Allenediynes

3.4.1.2.3 Control of Axial Chirality

3.4.1.2.3.1 Carbocyclization of Acetylene and Aryl-Substituted Monoynes Bearing Phosphoryl Moieties

3.4.1.2.3.2 Carbocyclization of 1,7-Diynes with Nitriles

3.4.1.3 Rhodium(I)-Mediated [2+2+2] Carbocyclizations

3.4.1.3.1 Control of Central Chirality

3.4.1.3.1.1 Carbocyclization of Tertiary Propargylic Alcohols, Bispropargylic Alcohols, and Dialkynylphosphine Oxides with 1,6-Diyne Esters

3.4.1.3.1.2 Carbocyclization of 1,6-Diynes with Substituted Alkenes

3.4.1.3.1.3 Carbocyclization of 1,6-Diynes with Electron-Deficient Ketones

3.4.1.3.1.4 Carbocyclization of 1,6-Enynes and Alkynes

3.4.1.3.1.5 Carbocyclization of 1,6-Enynes with Electron-Deficient Ketones

3.4.1.3.1.6 Cocyclization of Alkenyl Isocyanates and Terminal Alkynes

3.4.1.3.1.7 Cocyclization of Alkenyl Carbodiimides and Terminal Alkynes

3.4.1.3.1.8 Intramolecular Carbocyclization of Enediynes

3.4.1.3.1.9 Intramolecular Carbocyclization of Dienynes

3.4.1.3.1.10 Intramolecular Carbocyclization of 1,n-Dienynes (n = 4–6)

3.4.1.3.2 Control of Helical Chirality

3.4.1.3.2.1 Cocyclization of Tetraynes with Diynes

3.4.1.3.2.2 Intramolecular Carbocyclization of Triynes

3.4.1.3.3 Control of Axial Chirality

3.4.1.3.3.1 Cyclotrimerization of Internal Alkynes

3.4.1.3.3.2 Cocyclization of 1,6-Diynes and...

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Acylation • Allylic Oxidation • Allylic Rearrangements • Allylic Substitutio • Allylic substitution • Anhydrides • Asymmetric Cycloisomerizations • Asymmetric Fluorination • aziridines • Baeyer-Villiger Reactions • Benzylic Oxidation • Carbocyclization Reactions • C-C Bond Formation • C-H Bond Activation • Chemie • Chemische Synthese • Cross Coupling • Cycloaddition Reactions • Difluoromethylation • Electrocyclic Reactions • Ene Reactions • enolates • epoxides • Isomerizations • Mizoroki-Heck Reaction • Monofluoromethylation • Organic Chemistry • organic chemistry review • organic method • organic reaction • Organic Syntheses • organic synthesis • Organisch-chemische Synthese • Organische Chemie • Reaction • reference work • Review • review organic synthesis • review synthetic methods • Sigmatropic Rearrangements • Stereoselective Polymerization • Stereoselective Synthesis • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • Trifluoromethylation Reactions
ISBN-10 3-13-178961-1 / 3131789611
ISBN-13 978-3-13-178961-7 / 9783131789617
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 37,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich