Progress of Nuclear Safety for Symbiosis and Sustainability (eBook)

Advanced Digital Instrumentation, Control and Information Systems for Nuclear Power Plants
eBook Download: PDF
2014 | 2014
XVII, 322 Seiten
Springer Japan (Verlag)
978-4-431-54610-8 (ISBN)

Lese- und Medienproben

Progress of Nuclear Safety for Symbiosis and Sustainability -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human-machine interface technologies (ii) Risk  monitoring methods for large and  complex  plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and validation for nuclear power plants. The target readers of this book are Ph.D. students, researchers and engineers in the field of nuclear power engineering.

 



Editor: Hidekazu Yoshikawa, Professor Emeritus, Kyoto University. Collaborations as the member of technical program committee, session chairs, etc. to the international conferences related with human-machine system researches: For the area of nuclear I&C and HMIT, he regularly attended ANS Topical Meeting series NPIC & HMIT (Penn State, Albuquerque, Knoxville, Las Vegas), ASME organized ICONE conference series (Brussels and Xi'an), and Korean Nuclear Society organized ISOFIC series (Chejudo and Taejon).

He also served as Technical Program Chair of NUTHOS-6 in 2004 in Nara, Japan. (NUTHOS series conference is related to reactor thermal-hydraulics and nuclear power plant operation).


This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human-machine interface technologies (ii) Risk monitoring methods for large and complex plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and validation for nuclear power plants. The target readers of this book are Ph.D. students, researchers and engineers in the field of nuclear power engineering.

Editor: Hidekazu Yoshikawa, Professor Emeritus, Kyoto University. Collaborations as the member of technical program committee, session chairs, etc. to the international conferences related with human-machine system researches: For the area of nuclear I&C and HMIT, he regularly attended ANS Topical Meeting series NPIC & HMIT (Penn State, Albuquerque, Knoxville, Las Vegas), ASME organized ICONE conference series (Brussels and Xi’an), and Korean Nuclear Society organized ISOFIC series (Chejudo and Taejon).He also served as Technical Program Chair of NUTHOS-6 in 2004 in Nara, Japan. (NUTHOS series conference is related to reactor thermal-hydraulics and nuclear power plant operation).

Foreword 6
Preface 8
Introduction 10
Part I: Full Digital I& C and HMIT Systems
Part II: Risk Monitor Methods for Large and Complex Plants 11
Part III: Condition Monitors for Plant Components 11
Part IV: Virtual and Augmented Reality for Nuclear Power Plants 12
Part V: Software Reliability V& V for Nuclear Power Plants
Acknowledgements 14
Contents 16
Part I: Full Digital I& C and HMIT Systems
1: Mitsubishi’s Computerized HSI and Digital I& C System for PWR Plants
1.1 Introduction 20
1.2 Mitsubishi’s Digital I& C Design Features
1.2.1 Overview System Description 21
1.2.2 Implementation in New Plants 22
1.2.3 Digital Upgrading 22
1.3 HSI System’s V& V Program for Digital I&
1.3.1 Design Features of Mitsubishi’s HSI System 22
1.3.2 Implementation of the HSI System in the US-APWR 23
1.3.3 V& V Test Methodology
1.3.4 V& V Results
1.4 Conclusions 25
References 25
2: Design of an Integrated Operator Support System for Advanced NPP MCRs: Issues and Perspectives 27
2.1 Introduction 27
2.2 Operator Support Systems 28
2.2.1 What Are Operator Support Systems? 28
2.2.2 Human Cognitive Process Model of MCR Operators 29
2.2.3 Operator Support Systems for Cognitive Processes 31
2.2.3.1 Support Systems for the Monitoring/Detection Activity 31
2.2.3.2 Support Systems for the Situation Assessment Activity 31
2.2.3.3 Support Systems for the Response Planning Activity 32
2.2.3.4 Support Systems for the Response Implementation Activity 32
2.2.4 Integrated Decision Support System to aid Cognitive Activities of Operators (INDESCO) 32
2.3 How to Evaluate Operator Support Systems 33
2.3.1 Theoretical Evaluation Approach Using BBN Model 33
2.3.1.1 Assumptions for Evaluations 34
2.3.1.2 BBN Model for Situation Assessment of a Human Operator 34
2.3.1.3 HRA Event Trees 35
2.3.1.4 Evaluation Scenarios 35
2.3.1.5 Evaluation Results 36
2.3.2 Experimental Evaluation Using Workload and Accuracy 37
2.3.2.1 Implementation of the Target System 37
2.3.2.2 Experiment Conditions and Measures 38
2.3.2.3 Evaluation Results 38
2.4 Issues and Perspectives for Operator Support Systems 39
2.4.1 Trust of Operators on Operator Support Systems 39
2.4.2 Necessary and Useful Information 39
2.4.3 Evaluation of Operator Support Systems 40
2.4.4 Operators’ Dependence on Operator Support Systems 40
2.5 Summary and Conclusion 40
References 41
3: Concept of Advanced Back-up Control Panel Design of Digital Main Control Room 43
3.1 Introduction 43
3.2 Necessary of Advanced BCP 44
3.3 Issues for Advanced BCP Design 44
3.3.1 Design Overview of Advanced BCP 44
3.3.1.1 Configuration of BCP 44
3.3.2 Functional Assignment of BCP 44
3.3.3 Design of QDS-N 45
3.3.3.1 Allocation 45
3.3.3.2 System Configuration 46
3.3.3.3 Diversity 46
3.3.3.4 Qualification 46
3.3.3.5 Communication Between QDS-N and PICS 46
3.3.4 QDS-PAMS 46
3.3.5 Mini-Overview Display 46
3.3.6 Backup Indication for QDS PAMS 46
3.3.7 Optimizing BCP Layout Base on HFE Method 46
3.3.8 Functional and Task Analysis Optimization 46
3.4 Conclusion 47
Nomenclatures 47
References 47
4: U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors 48
4.1 Introduction 48
4.2 Advanced SMR R& D Program Overview
4.3 DOE Research on ICHMI Technology for SMRs 49
4.3.1 ICHMI Research Drivers for SMRs 49
4.3.1.1 Unique Operational and Process Characteristics 50
4.3.1.2 Affordability 50
4.3.1.3 Enhanced Functionality 51
4.3.2 Needs and Challenges for ICHMI Technology Research 51
4.3.3 DOE Research Activities Under the ICHMI Research Pathway 52
4.4 Conclusions 53
References 54
5: Application of FPGA to Nuclear Power Plant I& C Systems
5.1 Introduction 55
5.2 Overview of FPGA 56
5.2.1 FPGA Device 56
5.2.2 Development of FPGA 56
5.3 Application of FPGA in NPP 57
5.3.1 General 57
5.3.2 Development Process and Verification and Validation Efforts 57
5.3.3 Equipment Qualification (EQ) and Electromagnetic Compatibility (EMC) Qualification 58
5.3.4 Standards 58
5.4 Toshiba FPGA-Based I& C Systems
5.4.1 System Architecture 58
5.4.2 Power Range Neutron Monitor (PRNM) 59
5.4.3 RTIS 59
5.4.4 FPGA-Based Non-safety Systems 60
5.4.5 Advantage of Toshiba FPGA-Based I& C Systems
5.5 Conclusions 60
Nomenclatures 61
References 61
6: Prejob Briefing Using Process Data and Tagout/Line-up Data on 2D Drawings 62
6.1 Introduction 62
6.2 CAD Drawings 63
6.2.1 Existing Drawings Versus New Drawings 63
6.2.2 A Generic 2D CAD Format Developed by EDF 63
6.3 Links Between CAD Business Objects and Other Sources of Data 63
6.3.1 Business Objects are Central 63
6.3.2 Overview of the Architecture 63
6.4 Tagouts and Alignments Preparation on Drawings 64
6.5 Process Data Visualization on P& ID
6.6 Rapid Application Design Method 65
6.6.1 The Working with End Users 67
6.6.2 The Working with the Software Supplier 67
6.7 Conclusion 68
Nomenclatures 68
References 68
7: Study on Modeling of an Integrated Control and Condition Monitoring System for Nuclear Power Plants 69
7.1 Introduction 69
7.2 Overall Scheme of the Integrated Control and Condition Monitoring System 70
7.2.1 Function Analysis of the Integrated System 70
7.2.1.1 Control Subsystem Function Analysis 70
7.2.1.2 Condition Monitoring Subsystem Function Analysis 70
7.2.1.3 The Overall Function Analysis of the Control and Condition Monitoring Integrated System 70
7.2.2 System Hardware and Software Requirements 71
7.2.3 Characteristic Features of the Integrated System and Its Configuration 71
7.3 Control and Condition Monitoring Integrated System Modeling 73
7.3.1 Modeling Methods 73
7.3.1.1 Structured Modeling Methods IDEF0 73
7.3.1.2 Based on Scene Modeling Method UCM 74
7.3.1.3 IDEF0/UCM Integrated Modeling Methods 75
7.3.2 Modeling Study for the Integrated System Based on the IDEF0/UCM Integrated Methods 75
7.3.2.1 The Overall System Model 75
7.3.2.2 IDEF0 and UCM Model of the System Module 77
7.4 Conclusion 79
Nomenclatures 79
References 79
8: A Toolkit for Computerized Operating Procedure of Complex Industrial Systems with IVI-COM Technology 81
8.1 Introduction 81
8.2 Hierarchy for Operating Procedure 82
8.3 Design of Procedure Development Toolkit 82
8.4 IVI Architecture 83
8.5 Prototype System of Integrated Tool 84
8.6 Conclusions and Perspectives 85
References 86
9: Development and Design Guideline for Computerized Human–Machine Interface in the Main Control Rooms of Nuclear Power Plants 87
9.1 Introduction 87
9.2 Position of JEAG4617 in the Japanese Safety Regulations 88
9.3 Scope of Application 88
9.4 Organization of the Guidelines 88
9.5 Contents of the Guideline 89
9.5.1 Functional and Design Requirements 89
9.5.1.1 Functional Requirements 89
9.5.1.2 Design Requirements 89
9.5.2 Development and Design Processes 89
9.5.3 Commentary 89
9.6 Present Status of the Guideline 89
9.7 Computerized HMI in the MCR of NPPs in Japan 89
9.8 Operation in ABWR Type MCR at the Occurrence of the Niigata-Chuetsu- Oki Earthquake 91
9.9 Conclusions 91
References 91
Part II: Risk Monitor Methods for Large and Complex Plants 92
10: Overview of System Reliability Analyses for PSA 93
10.1 Introduction 93
10.2 What Is a System? 93
10.3 Systems Engineering and Related Fields 94
10.3.1 Systems Engineering 94
10.3.2 Operations Research (OR) 94
10.3.2.1 Cake Shop Example 94
10.3.2.2 Linear Programming 95
10.3.2.3 Decision Theory 95
10.3.2.4 Game Theory 95
10.3.2.5 Queuing Theory 95
10.3.3 Industrial Engineering (IE) 95
10.3.4 Quality Control (QC) 96
10.4 Probabilistic Safety Assessment 96
10.5 System Reliability Analysis Methods 96
10.5.1 Failure Mode and Effects Analysis (FMEA) 97
10.5.2 Hazard and Operability Analysis (HAZOP) 97
10.5.3 Reliability Block Diagram (RBD) 97
10.5.4 Markov Model 97
10.5.5 Event Tree Analysis (ETA) 98
10.5.6 Fault Tree Analysis (FTA) 99
10.5.7 GO Methodology 99
10.5.8 Petri Net 99
10.5.9 Bayesian Network (BN) 100
10.5.10 Digraph Matrix 100
10.5.11 Dynamic Event Tree 101
10.5.12 Goal Tree-Success Tree (GTST) 101
10.5.13 Continuous Event Tree 101
10.5.14 Discrete Event Simulation 101
10.5.15 Dynamic Flowgraph Methodology (DFM) 102
10.5.16 Cell-to-Cell Mapping Technique (CCMT) 102
10.5.17 Dynamic Logical Analysis Methodology (DYLAM) 102
10.5.18 GO-FLOW Methodology 103
10.5.19 Summary of the System Reliability Analyses 103
10.6 Summary 103
10.7 Answer of the Questions 104
References 104
11: A Systematic Fault Tree Analysis Based on Multi-level Flow Modeling 106
11.1 Introduction 106
11.2 Fault Tree Construction Based on the Model by Multi-level Flow Modeling 107
11.2.1 Multi-level Flow Modeling 107
11.2.2 Knowledge and Data for FT Construction 107
11.2.3 Influence Propagation by the Change of Functional Achievement 108
11.2.4 FT Construction Algorithm 109
11.3 FT Construction of a Simple Chemical Plant 109
11.3.1 Target Chemical Plant 109
11.3.2 MFM Model for a Cooling Plant of Nitric Acid 109
11.3.3 FT Construction Results 110
11.3.4 Discussions 110
11.4 Conclusions 112
References 112
12: Reliability Graph with General Gates: A Novel Method for Reliability Analysis 113
12.1 Introduction 113
12.2 Reliability Graph with General Gates 114
12.2.1 Reliability Graph 114
12.2.2 Reliability Graph with General Gates 115
12.2.3 Quantification of the RGGG 115
12.2.3.1 Transforming to Bayesian Networks 115
12.2.3.2 Modeling of RGGG 115
12.2.3.3 OR Node 116
12.2.3.4 AND Node 117
12.2.3.5 K-out-of-N Node 117
12.2.4 Examples 118
12.3 Extension of the RGGG 118
12.3.1 Dynamic RGGG 119
12.3.1.1 Addition of Dynamic Nodes 119
12.3.1.2 Quantification of Dynamic Nodes 120
12.3.2 A Software Tool for the Dynamic RGGG 122
12.3.2.1 Example 122
12.3.3 Repairable RGGG 123
12.3.3.1 Availability of Simple Repairable Process 124
12.3.3.2 Independent Repairable System 124
12.3.3.3 Dependent Series Repairable System 124
12.3.3.4 4K/M Redundant Parallel Repairable System 125
12.3.3.5 Example 126
12.4 Summary and Conclusions 130
References 130
13: Design of Risk Monitor for Nuclear Reactor Plants 132
13.1 Introduction 132
13.2 Distributed HMI System 133
13.3 Risk Monitor 133
13.3.1 Definition of Risk and Risk Ranking 134
13.3.1.1 Design Principle of Nuclear Safety 134
13.3.1.2 Risk to be Monitored 134
13.3.1.3 Severe Accident Phenomena 134
13.3.1.4 Risk Ranking 134
13.3.2 Anatomy of Fault Event Occurrence 135
13.3.3 Risk Monitor by Semiotic Modeling 136
13.3.4 Plant DiD Risk Monitor and Reliability Monitor 136
13.3.5 Visualization as Dynamic Risk Monitor 137
13.4 Example Practice of a Reliability Monitor 137
13.4.1 Description of Containment Spray System 137
13.4.2 FMEA for Containment Spray System 139
13.4.3 GO-FLOW Analysis for Containment Spray System 139
13.5 Concluding Remarks 141
References 141
14: Review of Practicing Level-2 Probabilistic Safety Analysis for Chinese Nuclear Power Plants 143
14.1 Introduction 143
14.2 Review of Each Technical Element 144
14.2.1 Familiarization with Plant Data and Systems 144
14.2.2 Interface with Level-1 144
14.2.3 Containment Performance Analysis 145
14.2.4 Severe Accident Progression and Containment Event Tree Analysis 145
14.2.5 Source Term and Release Category Analysis 146
14.2.6 Sensitivity, Importance, and Uncertainty Analysis 148
14.2.7 Outcome of Level-2 PSA 148
14.3 Conclusion 148
References 148
15: Risk Monitoring for Nuclear Power Plant Applications Using Probabilistic Risk Assessment 150
15.1 Introduction 150
15.2 Characteristics of the Risk Monitoring System COSMOS 151
15.3 Detailed Functions of COSMOS 151
15.3.1 COSMOS-FP 151
15.3.1.1 On-Line Maintenance Scheduling and Risk Evaluation 151
15.3.1.2 For Successive Execution of Systems and Event Trees (ETs) Corresponding to Exact Plant Conditions (In-Service, Standby or OOS of PSA Equipment) 152
15.3.1.3 For Realization of Speeding-Up Quantification 152
15.3.2 COSMOS-SD 153
15.3.2.1 For Shutdown Scheduling and Risk Evaluation 153
15.3.2.2 For Improvement of a Shutdown RISKMAN Model to Speed-Up Quantification for Various POS Status 153
15.4 Risk Monitoring Usage 154
15.4.1 At-Power Risk Monitoring in Case of On-Line Maintenance (COSMOS-FP) 154
15.4.2 Shutdown Risk Evaluation for Every Outage (COSMOS-SD) 154
15.5 Further Enhancements of COSMOS 156
15.6 Conclusion 156
Nomenclatures 156
References 156
Part III: Condition Monitors for Plant Components 157
16: Condition Monitoring for Maintenance Support 158
16.1 Introduction 158
16.2 Physical Modelling Method 159
16.2.1 Flow Sheets and Data Reconciliation 159
16.2.2 Residuals 159
16.2.3 Statistical Distribution of Residuals 159
16.2.4 Redundancy 160
16.2.4.1 Physical Redundancy 160
16.2.4.2 Analytical Redundancy 160
16.2.4.3 Apparent Redundancy 161
16.2.5 Modelling Equations 161
16.2.5.1 Fundamental Equations 161
16.2.5.2 Analytical Equations 161
16.2.5.3 Empirical Equations 161
16.3 Time Series Analysis 161
16.4 Analysis of Variances 162
16.5 Fault Detection in Practice 162
16.6 Conclusions 163
References 163
17: Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants 164
17.1 Introduction 164
17.2 Plant Life Management 165
17.3 Life-Beyond 60 Years 166
17.4 Online Measurements in NPPs 167
17.4.1 Active Components 167
17.4.2 Passive Components 167
17.4.2.1 Monitoring Large Defects in Metal Components 168
17.4.2.2 Monitoring Early Degradation in Metals 170
17.4.2.3 Primary Containment Structures 171
17.4.2.4 Cable Condition Monitoring 172
17.5 Prognostics for the Nuclear Power Industry 173
17.5.1 Integrated Prognostic 175
17.6 Technology/Knowledge Gaps 176
17.7 Conclusions 176
References 176
18: Using Condition-based Maintenance and Reliability-centered Maintenance to Improve Maintenance in Nuclear Power Plants 180
18.1 Introduction 180
18.2 Comparison of Different Maintenance Strategies in NPPs 181
18.3 Theoretical Foundation and Methodology of CBM 183
18.4 Application Experience of CBM in Daya Bay Nuclear Power Base 185
18.4.1 Optimization of Equipment Maintenance Programme by Introducing CBM Methodologies 185
18.4.2 The Development of PdM Management System 186
18.4.3 The Development of Intelligent Failure Diagnosis Expert System 187
18.5 Conclusion 187
Nomenclatures 188
References 188
19: Advanced Management of Pipe Wall Thinning Based on Prediction-Monitor Fusion 189
19.1 Introduction 189
19.2 Pipe Wall Thinning Management 189
19.3 Prediction by FAC Analyses 190
19.4 Condition Monitoring 191
19.5 Reliability Assessment 192
19.6 New Strategy of PWTM 194
19.7 Concluding Remarks 194
References 195
20: Non-destructive Evaluation of Material State by Acoustic, Electromagnetic and Thermal Techniques 196
20.1 Introduction 196
20.2 NDE Using Material Properties 197
20.2.1 Specimens for NDE Experiments 197
20.2.2 Acoustic Impedance Method 197
20.2.3 Magnetoacoustoelasticity 197
20.2.4 Magnetic Flux Leakage Testing 197
20.2.5 Thermograph with Magnetic Heating 197
20.3 NDE of Mechanical Degradation 197
20.3.1 Specimens 197
20.3.2 Acoustic Impedance Method 198
20.3.3 Magnetoacoustoelasticity 198
20.3.4 Magnetic Flux Leakage Testing 199
20.3.5 Thermograph with Magnetic Heating 199
20.4 NDE of Plastic Strain and Residual Stress 199
20.4.1 Specimens 199
20.4.2 Acoustic Impedance Method 200
20.4.3 Magnetoacoustoelasticity 201
20.4.4 Magnetic Flux Leakage Testing 202
20.4.5 Thermograph with Magnetic Heating 203
20.5 Conclusion 204
References 204
21: Non-contact Acoustic Emission Measurement for Condition Monitoring of Bearings in Rotating Machines Using Laser Interferometry 205
21.1 Introduction 205
21.2 Experimental System 206
21.3 Experimental Results and Discussion 207
21.4 Conclusions 213
References 213
22: Crack Growth Monitoring by Strain Measurements 214
22.1 Introduction 214
22.2 Crack Growth Monitoring Method 215
22.2.1 Basic Procedure 215
22.2.2 Procedure for Multiple Strain Measurements 216
22.3 Experiment 217
22.3.1 Experimental Procedure 217
22.3.2 Experimental Results 217
22.4 Estimation of Crack Size 219
22.4.1 Finite Element Analysis 219
22.4.2 Estimation Using Single Strain Gage 219
22.4.3 Estimation Using Multiple Strain Gages 220
22.5 Discussion 220
22.6 Conclusion 221
References 221
23: Acoustic Monitoring of Rotating Machine by Advanced Signal Processing Technology 223
23.1 Introduction 223
23.2 Signal Processing Methods 224
23.2.1 Pre-processing for Feature Extraction 224
23.2.1.1 Log-Scale Auto-Power Spectral Density (log-APSD) 224
23.2.1.2 Mel-Scale Auto-Power Spectral Density (Mel-scale-APSD) 224
23.2.1.3 Cepstrum [ 5 ] 224
23.2.2 Dimension Reduction for Visualization 225
23.2.2.1 PCA Based Classification 225
23.2.2.2 KPCA Based Classification [ 6, 7 ] 225
23.2.2.3 Heuristic Classification 225
23.2.3 State Discrimination for Anomaly Monitoring 226
23.2.3.1 State Discrimination by PNN [ 8 ] 226
23.2.3.2 State Discrimination by SVDD [ 9 ] 226
23.3 Test Results 227
23.3.1 Test Facility and Measurement 227
23.3.2 Evaluation of Classification Performance of PCA, KPCA and a Heuristic Method 227
23.3.3 Discrimination Results by PNN and SVDD 229
23.4 Conclusions 230
References 231
24: The Wireless Diagnostic System for Motor Operated Valves 232
24.1 Introduction 232
24.2 Development of New Diagnostic System 233
24.2.1 Points and Features 233
24.2.2 Outline of Diagnostic Method 233
24.2.3 Mock-Up Test Results 233
24.2.4 Confirmation of Design Base Performance 233
24.3 Development of Wireless Remote Diagnostic System 234
24.3.1 Background of the Development 234
24.3.2 Outline of Wireless Remote Diagnostic System 234
24.4 Conclusions 236
References 236
Part IV: Virtual and Augmented Reality for Nuclear Power Plants 237
25: Virtual and Augmented Reality in the Nuclear Plant Lifecycle Perspective 238
25.1 Introduction 238
25.1.1 The Halden Boiling Heavy Water Reactor 239
25.1.2 Safety MTO: Man Technology Organisation 239
25.1.3 Halden Virtual Reality Centre (HVRC) 239
25.1.4 Definition of Virtual Reality 240
25.1.5 Definition of Augmented Reality 240
25.1.6 Areas of Use of VR and AR at IFE 240
25.2 VR and AR in Design 240
25.2.1 Reuse of 3D Models in the Design Phase 241
25.2.2 Control Room Design and Validation Using VR 241
25.2.3 User-Friendly AR Technology for Real World Use 242
25.2.3.1 The AR Solution Developed at IFE 242
25.2.3.2 The Role of AR in the Plant Life Cycle 242
25.3 VR in Operation and Maintenance 243
25.3.1 Requirements to Training Safer Refuelling 243
25.3.2 VR Applications at LNPP for Training 243
25.3.3 Creating Up-to-Date Data and 3D Models 244
25.3.4 Use of the VR Solutions in Daily Training 244
25.3.5 Future Enhancements for Use on New Scenarios 244
25.4 VR in Decommissioning 244
25.4.1 Challenges in Decommissioning Planning 245
25.4.2 Establishing a Visualisation Centre at ChNPP 246
25.4.3 Overall Features of the CDVC 246
25.4.4 Reducing Radiation Exposure Dose Using VR 246
25.4.5 Efficient Reuse of 3D Data 246
25.5 Future Plans at LNPP and ChNPP 246
25.6 Nuclear Energy’s Role in Future Sustainable Energy Supplies 246
25.6.1 VR and AR Contribution to the Nuclear Safety for Symbiosis and Sustainability 247
25.7 Summary 248
References 249
26: A Feasibility Study on Worksite Visualization System Using Augmented Reality for Fugen NPP 251
26.1 Introduction 251
26.2 Decommissioning of Fugen 251
26.2.1 Outline of Fugen 251
26.2.2 Decommissioning Program of Fugen 252
26.2.3 Current Status of Decommissioning 254
26.3 Decommissioning Engineering Support System (DEXUS) 255
26.4 Worksite Visualization System (WVS) 255
26.4.1 Reference Support for Cutting Lines and Restraint Parts 256
26.4.2 Record Support for Progress of Dismantling 256
26.4.3 Prototype System Development 256
26.4.3.1 Realization of Superimposing 3D CAD Data 256
26.4.3.2 Cutting Function of 3D CAD Data 257
26.4.3.3 User Interface and Hardware 257
26.5 Feasibility Evaluation of WVS 258
26.5.1 Purpose and Outline of Evaluation 258
26.5.2 Evaluation Method 258
26.5.2.1 Evaluation Environment 258
26.5.2.2 Evaluators 258
26.5.2.3 Dismantling Scenario 258
26.5.2.4 Procedure of Evaluation 259
26.5.2.5 Questionnaire 259
26.5.3 Evaluation Result 259
26.5.4 Discussion 259
26.5.5 System Function 260
26.5.6 Usability 261
26.6 Summary 261
References 261
27: Augmented Reality for Improved Communication of Construction and Maintenance Plans in Nuclear Power Plants 262
27.1 Introduction 262
27.2 Augmented Reality 263
27.2.1 AR Binoculars 263
27.3 Real World Applications 264
27.3.1 Augmented Reality and Construction 264
27.3.2 Augmented Reality and Training of Operators 265
27.3.3 Augmented Reality and Maintenance 266
27.4 Conclusion 267
References 267
28: 3D Representation of Radioisotopic Dose Rates Within Nuclear Plants for Improved Radioprotection and Plant Safety 268
28.1 Introduction 268
28.2 EDF CZT Gamma Spectrometer 269
28.2.1 Acquisitions 269
28.2.2 Spectral Analysis 270
28.3 Dose Calculations 270
28.4 Combining Radiological Information and VR 271
28.4.1 Example 1: Optimising Shielding 271
28.4.1.1 Visualising Radioisotopic Dose Maps 271
28.4.2 Example 2: Radiation Decay 272
28.5 Discussion and Conclusions 273
References 274
29: Wide Area Tracking Method for Augmented Reality Supporting Nuclear Power Plant Maintenance Work 275
29.1 Introduction 275
29.2 Proposal of a Tracking Method Using Multi-range Markers 276
29.2.1 Design of Multi-range Markers 276
29.2.2 Algorithm to Recognize Multi-range Markers 276
29.2.3 Algorithm to Calculate the Relative Position and Orientation Between a Camera and Markers 278
29.3 Evaluation of the Proposed Method 278
29.3.1 Recognition Range 278
29.3.2 Stability of Marker Recognition Under Variable Illumination Conditions 279
29.3.3 Processing Speed of Tracking 279
29.3.4 Misrecognition of Markers 279
29.3.5 Area Within Which Tracking Can Be Executed 279
29.4 Conclusions 280
References 281
Part V: Software Reliability V& V for Nuclear Power Plants
30: Research on Software Systems Dependability at the OECD Halden Reactor Project 283
30.1 Introduction 283
30.2 Software Safety Integrity 284
30.3 The Research Problems 285
30.3.1 Software Development 285
30.3.2 Software Assurance 286
30.3.3 Software Approval and Deployment 287
30.4 Safety Demonstration 288
30.5 Conclusions 288
References 289
31: High Level Issues in Reliability Quantification of Safety-Critical Software 290
31.1 Introduction 290
31.2 BBN Modeling 291
31.2.1 Assessment Approaches 291
31.2.2 Consideration on Evidence 291
31.2.3 Cause-Consequence Relation 292
31.3 Statistical Testing 293
31.4 Conclusions 294
Nomenclature 294
References 294
32: Software Reliability Analysis in Probabilistic Risk Analysis 296
32.1 Introduction 296
32.2 State-of-the-Art of Software Reliability in PRA for Nuclear Power Plants 296
32.2.1 Software Reliability 296
32.2.2 Software Reliability Quantification 297
32.2.3 Software Reliability Estimation in PRA 297
32.2.3.1 Screening Out Approach 297
32.2.3.2 Screening Value Approach 298
32.2.3.3 Expert Judgement Approach 298
32.2.3.4 Operating Experience Approach 298
32.2.4 Conclusions on Software Reliability in PRA 298
32.3 Failure Modes Taxonomy 299
32.3.1 Background 299
32.3.2 General Approach 299
32.3.3 Requirements for the Failure Modes Taxonomy 299
32.3.4 Levels of Details of the Taxonomy 300
32.3.5 Failure Modes 300
32.4 Safety Justification Framework 300
32.4.1 Safety Case 300
32.4.2 Software Reliability Assessment Case 301
32.4.3 Software Reliability Claims 301
32.4.4 Bayesian Belief Network (BBN) 301
32.4.5 Types of Evidence 301
32.4.6 BBN Model Suggestions in HARMONICS 302
32.5 Conclusions 302
Nomenclatures 303
References 303
About the Editors 305
Author Index 307
Subject Index 309

Erscheint lt. Verlag 20.3.2014
Zusatzinfo XVII, 322 p. 223 illus., 158 illus. in color.
Verlagsort Tokyo
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management
Schlagworte Computational Risk Analysis Methods • Digital Nuclear I&C and HMIT • Digital Nuclear I&C and HMIT • Nuclear Plant Condition Monitors • Quality Control, Reliability, Safety and Risk • Safety Operation of Nuclear Power Plant • Virtual and Augmenter Reality
ISBN-10 4-431-54610-3 / 4431546103
ISBN-13 978-4-431-54610-8 / 9784431546108
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich