Analytical Routes to Chaos in Nonlinear Engineering (eBook)
280 Seiten
John Wiley & Sons (Verlag)
978-1-118-88391-4 (ISBN)
Analytical Routes to Chaos in Nonlinear Engineering discusses analytical solutions of periodic motions to chaos or quasi-periodic motions in nonlinear dynamical systems in engineering and considers engineering applications, design, and control. It systematically discusses complex nonlinear phenomena in engineering nonlinear systems, including the periodically forced Duffing oscillator, nonlinear self-excited systems, nonlinear parametric systems and nonlinear rotor systems. Nonlinear models used in engineering are also presented and a brief history of the topic is provided.
Key features:
* Considers engineering applications, design and control
* Presents analytical techniques to show how to find the periodic motions to chaos in nonlinear dynamical systems
* Systematically discusses complex nonlinear phenomena in engineering nonlinear systems
* Presents extensively used nonlinear models in engineering
Analytical Routes to Chaos in Nonlinear Engineering is a practical reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
Professor Luo is currently a Distinguished Research Professor at Southern Illinois University Edwardsville. He is an international renowned figure in the area of nonlinear dynamics and mechanics. For about 30 years, Dr. Luo's contributions on nonlinear dynamical systems and mechanics lie in (i) the local singularity theory for discontinuous dynamical systems, (ii) Dynamical systems synchronization, (iii) Analytical solutions of periodic and chaotic motions in nonlinear dynamical systems, (iv) The theory for stochastic and resonant layer in nonlinear Hamiltonian systems, (v) The full nonlinear theory for a deformable body. Such contributions have been scattered into 13 monographs and over 200 peer-reviewed journal and conference papers. His new research results are changing the traditional thinking in nonlinear physics and mathematics. Dr. Luo has served as an editor for the Journal "Communications in Nonlinear Science and Numerical simulation", book series on Nonlinear Physical Science (HEP) and Nonlinear Systems and Complexity (Springer). Dr. Luo is the editorial member for two journals (i.e., IMeCh E Part K Journal of Multibody Dynamics and Journal of Vibration and Control). He also organized over 30 international symposiums and conferences on Dynamics and Control.
Preface ix
1 Introduction 1
1.1 Analytical Methods 1
1.1.1 Lagrange Standard Form 1
1.1.2 Perturbation Methods 2
1.1.3 Method of Averaging 5
1.1.4 Generalized Harmonic Balance 8
1.2 Book Layout 24
2 Bifurcation Trees in Duffing Oscillators 25
2.1 Analytical Solutions 25
2.2 Period-1 Motions to Chaos 32
2.2.1 Period-1 Motions 33
2.2.2 Period-1 to Period-4 Motions 35
2.2.3 Numerical Simulations 52
2.3 Period-3 Motions to Chaos 57
2.3.1 Independent, Symmetric Period-3 Motions 57
2.3.2 Asymmetric Period-3 Motions 64
2.3.3 Period-3 to Period-6 Motions 71
2.3.4 Numerical Illustrations 82
3 Self-Excited Nonlinear Oscillators 87
3.1 van del Pol Oscillators 87
3.1.1 Analytical Solutions 87
3.1.2 Frequency-Amplitude Characteristics 97
3.1.3 Numerical Illustrations 110
3.2 van del Pol-Duffing Oscillators 114
3.2.1 Finite Fourier Series Solutions 114
3.2.2 Analytical Predictions 130
3.2.3 Numerical Illustrations 143
4 Parametric Nonlinear Oscillators 151
4.1 Parametric, Quadratic Nonlinear Oscillators 151
4.1.1 Analytical Solutions 151
4.1.2 Analytical Routes to Chaos 156
4.1.3 Numerical Simulations 169
4.2 Parametric Duffing Oscillators 186
4.2.1 Formulations 186
4.2.2 Parametric Hardening Duffing Oscillators 194
5 Nonlinear Jeffcott Rotor Systems 209
5.1 Analytical Periodic Motions 209
5.2 Frequency-Amplitude Characteristics 225
5.2.1 Period-1 Motions 226
5.2.2 Analytical Bifurcation Trees 231
5.2.3 Independent Period-5 Motion 239
5.3 Numerical Simulations 246
References 261
Index 265
Erscheint lt. Verlag | 21.4.2014 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Technik ► Maschinenbau | |
Schlagworte | Chaos • Chaos / Fractal / Dynamical Systems • Chaos, Fraktale u. dynamische Systeme • Control Process & Measurements • Maschinenbau • Mathematics • Mathematik • mechanical engineering • Mess- u. Regeltechnik • Nichtlineares System • Nichtlineare u. komplexe Systeme • Nonlinear and Complex Systems • Physics • Physik |
ISBN-10 | 1-118-88391-8 / 1118883918 |
ISBN-13 | 978-1-118-88391-4 / 9781118883914 |
Haben Sie eine Frage zum Produkt? |
Größe: 29,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich