Some Problems of Chemical Kinetics and Reactivity -  N. N. Semenov

Some Problems of Chemical Kinetics and Reactivity (eBook)

Volume 2
eBook Download: PDF | EPUB
2013 | 1. Auflage
178 Seiten
Elsevier Science (Verlag)
978-1-4831-8440-1 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
24,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Some Problems of Chemical Kinetics and Reactivity discusses two types of explosion in detail. These two types are the thermal and chain explosion. Points are also given in the book about thermal theory on a quantitative basis. The book explains that the science of combustion develops as a special branch of chemical kinetics. The text also covers the chain ignition concept. Such concept shows that phosphorus would not ignite below some critical oxygen pressure and no traces of reaction could be detected under such condition. Another type of concept discussed in the book is the branched chain reactions. The book proves that the existence of limit phenomenon determines the practicability of using nuclear energy. Factors such as pressure, density, temperature, and vessel dimension transform inert condition to violent reaction. Formulas and computations to prove the concepts mentioned are provided in the book. The book will provide valuable insight to nuclear physicists, scientists, students, and researchers.
Some Problems of Chemical Kinetics and Reactivity discusses two types of explosion in detail. These two types are the thermal and chain explosion. Points are also given in the book about thermal theory on a quantitative basis. The book explains that the science of combustion develops as a special branch of chemical kinetics. The text also covers the chain ignition concept. Such concept shows that phosphorus would not ignite below some critical oxygen pressure and no traces of reaction could be detected under such condition. Another type of concept discussed in the book is the branched chain reactions. The book proves that the existence of limit phenomenon determines the practicability of using nuclear energy. Factors such as pressure, density, temperature, and vessel dimension transform inert condition to violent reaction. Formulas and computations to prove the concepts mentioned are provided in the book. The book will provide valuable insight to nuclear physicists, scientists, students, and researchers.

Front Cover 1
Some Problems of Chemical Kinetics and Reactivity 4
Copyright Page 5
Table of Contents 6
INTRODUCTION 8
PART IV: BRANCHED CHAIN REACTIONS AND THERMAL IGNITIONS 12
CHAPTER 1. THERMAL IGNITION 12
REFERENCES 28
CHAPTER 2. CHAIN SELF-IGNITION 30
1. General considerations on chain self-ignition 30
2. The oxidations of phosphorus, sulphur and certain compounds 37
REFERENCES 56
CHAPTER 3. CHAIN IGNITION IN HYDROGEN–OXYGEN MIXTURES 58
1. Kinetic approximation 60
2. Pure diffusion 76
REFERENCES 90
CHAPTER 4. INTERACTION OF CHAINS 92
1. Negative chain interaction 92
2. Positive chain interaction 94
REFERENCES 104
CHAPTER 5. DEGENERATELY BRANCHED CHAIN REACTIONS 105
1. Introduction 105
2. The oxidation of methane 114
3. The oxidation kinetics of H2S 128
4. Liquid-phase hydrocarbon oxidation kinetics 134
5. Some new phenomena in hydrocarbon and aldehyde oxidations 147
NAME INDEX 156
SUBJECT INDEX 159
ERRATA AND ADDENDA TO VOLUME 162

Chapter 2

CHAIN SELF-IGNITION


Publisher Summary


The theory of chain self-ignition involves the following postulates: (1) the chain initiation rate, that is, the rate of production of active centers or chain carriers, is the lowest rate accessible to kinetic measurement; (2) the chains are material, that is, they are consisted of reacting atoms and radicals; (3) the active centers can react in three ways, that is, chain termination, chain propagation, and chain branching. The chain length is the number of elementary reactions that is produced by one active centre, generated in some fashion, which is not specified. The reaction rate in all chain processes equals the product of the initial chain generation rate and the total chain length. The theory of branched-chain reactions within the explosion limits is more complex than the theory of the self-ignition limits. The chain theory is developed in two stages. The first stage is related to photoreactions, and the second stage is related to thermal explosions.

1 GENERAL CONSIDERATIONS ON CHAIN SELF-IGNITION*


The theory of chain self-ignition was developed in the late 1920s and early 1930s, particularly by Soviet and English groups; it involves the following postulates, which have now been adequately verified by experiment.

1. The chain initiation rate (i.e. the rate of production of active centres or chain carriers) is vanishingly small. It is in any case far beyond the lowest rates accessible to kinetic measurement.

2. The chains are material, i.e. consist of reacting atoms and radicals; chains involving energy-rich molecules are supposed impossible.

3. The active centres (atoms and radicals) can react in three ways:

(a) chain termination (homogeneous or heterogeneous), the active centres being lost because stable products or inactive radicals are found;

(b) chain propagation, in which in any step or cycle the same active particles are regenerated as were present at the beginning;

(c) chain branching, in which the number of active centres increases.

The initiation rate is denoted by n0, while the probabilities of processes (a)−(c) at a given chain stage are β, α and δ respectively.

Chain length (v). This is the number of elementary reactions produced by one active centre, generated in some fashion not specified. The rate at which such centres form is n0; if there is no branching the active centres can only react in two ways, as in (a) and (b) above; in (b) a final product and one new centre is formed. Since (a) and (b) have been assumed to be the only reactions open to an active centre we must have α + β = 1. The probability of a chain having s links equals the product of the probability that propagation will occur (s − 1) times, i.e. αs−1, and the termination probability β:

s=αs−1β=αs−1(1−α) (1)

(1)

Since , v is just the mean value of s, namely

=s¯=∑I∞Pss=∑1∞sαs−1(1−α)=(1−α)−1=β−1 (2)

(2)

If branching can also occur the expression for v must incorporate δ, since this as it were reduces the effect of β. Thus if we have one act of branching per two terminations the net effect is that of one termination only, since two chains vanish but one new one appears. Hence the expression for v must contain β − δ instead of ß,* so

*=(β−δ)−1=v(1−δv)−1 (2′)

(2′)

where v* is the length when δ ≠ 0 and v is as before.

The reaction rate in all chain processes equals the product of the initial chain generation rate and the total chain length, i.e.

=n0/(β−δ)=n0v/(1−δv) (3)

(3)

This simple formula already implies that ignition limits occur; suppose that β and δ vary in different ways with the external parameters (temperature, pressure, mixture composition, etc.) such that we can on occasion have δ = β, i.e. that v*, and hence w, tend to infinity. Then the condition

−δ=0 (4)

(4)

defines the boundaries to the chain ignition region. We might go further, and assume δ > β under some conditions, but we then get a nonsensical result, since v* and w become negative. This occurs because the above arguments only apply for v finite; in this connexion we must now examine what α, β and δ mean physically. We in fact find that they are merely the ratios of the numbers of reactions of the various species to the total number of reactions. The relations are in fact correct only at the limit δ → β, i.e. for v large, but finite.

Let us consider what occurs if the branching rate equals or exceeds the termination rate; for this purpose the time course of the process is required. For β > δ no argument is required, since if v is not too large the system is unchanged even over very long times, because a steady state with fixed active particle concentrations is soon set up, and these concentrations ensure a fixed v. When δ > β the number and concentration of active particles increase continuously, and so do w and v, as can be shown mathematically. The rate of change of active particle concentration is

n/dt=n0−(g−f)n (5)

(5)

where g and f are kinetic termination and branching coefficients proportional to β and δ respectively.* Integrating and putting n = 0 at t = 0, we have

=n0(1−exp{−(g−f)t})/(g−f) (6)

(6)

If (g – f) is sufficiently large the exponential term soon becomes negligible. Then

=n0/(g−f) (7)

(7)

Now w is the product of a kinetic factor a (for the chain propagation reaction) and the active centre concentration:

=an=an0/(g−f) (8)

(8)

Hence (8) taken with (3) gives δ = f/a and β = g/a. Thus when β > δ we soon get w constant, as would be expected. In the case of interest to us, fg 0, we have that when fg = 0 (5) and (7) go over to

n/dt=n0 (9)

(9)

and

=n0t (10)

(10)

respectively.

Then

=an=an0t (11)

(11)

the reaction rate slowly increasing with time (at small n0) so the process is no longer steady.

For fg > 0 the integral to (5) is

=[n0/(f−g)][exp{(f−g)t}−1] (12)

(12)

and

=[an0/(f−g)][exp{(f−g)t}−1] (13)

(13)

hence w rises exponentially. Fig. 14 [2] shows how v = w/n0 varies with the dimensionless quantity at for various values of


Fig. 14 v - w/w0 vs. at for various values of (fg)/a − x [2]

f−g)/a=x

The amounts reacted will be

=∫0tw dt (14)

(14)

for

−g<0X=an0t/(f−g) (15)

(15)

−g=0X=an0t2/2 (16)

(16)

−g>0X=[an0/(f−g)2][exp{(f−g)t}−1]−an0t2/2 (17)

(17)

Thus even when f > g the rate never becomes negative, since the larger fg the steeper the rate of rise. Formally speaking (13) would imply that w can become infinitely great, but in real (closed) systems the reactant concentrations begin to fall off as the rates become high.* Eventually the reactant concentrations reach the point where self-acceleration ceases and w begins to fall to zero from some maximum value. Ignition does not imply an infinite rate, but merely that all the reactant is transformed in a finite but very short time.

When n0 is very small the steady-state w for fg < 0 is also very small, even if a is large and g −...

Erscheint lt. Verlag 22.10.2013
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 1-4831-8440-4 / 1483184404
ISBN-13 978-1-4831-8440-1 / 9781483184401
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 18,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 5,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99