Multiphased Ceramic Materials -

Multiphased Ceramic Materials

Processing and Potential

Wei-Hsing Tuan, Jin-Kun Guo (Herausgeber)

Buch | Softcover
XIII, 152 Seiten
2012 | Softcover reprint of the original 1st ed. 2004
Springer Berlin (Verlag)
978-3-642-62278-6 (ISBN)
85,59 inkl. MwSt
In many fields of thermomechanical applications, such as advanced gas turbine, thermal protection of space planes, oil and coal electric generation, advanced brake devices, etc. high performance materials are needed. Lacking of toughness and reliability, monolithic ceramics had reached their limits and multi-phase - terials are expected as the most promising candidates. Apart from the impro- ment on the thermomechanical performance, more than one function, such as magnetic, electrical and optical functions, can be incorporated simultaneously into the multi-phase material. However, several key problems remained to be solved in the near future. These problems include microstructure complexity, process challenge, machining ability and the most important cost issue. Fourteen scientists from 9 leading research - stitutes across Taiwan Strait are invited to give their view and experimental e- dence on solving the above problems. These reports highlight the principles of - signing delicate microstructure and novel processing routes. The potential of improving machining ability is also demonstrated. However, the most critical cost problem remained to be solved. In light of the economic surge in China in recent years, the market demands more technology breakthrough. The market can accept value-added products. It further indicates the importance of developing of multi-phase materials with multi-functions. Along with the market growth, the cost problem will be solved soon as the mass production technology becoming available.

1 Multi-phase Materials.- 1.1 Introduction.- 1.2 The Basic Concept of Multi-phase Materials.- 1.3 The Need for Multi-phase Materials.- 1.4 Research Objectives.- References.- 2 New Concepts in the Design of Tough Ceramics.- 2.1 Introduction.- 2.2 Experiments.- 2.3 Results and Discussion.- 2.4 Conclusions.- Acknowledgement.- References.- 3 Interface Design of Tough Ceramics: Si3N4/BN Fibrous Monolithic Ceramic.- 3.1 Introduction.- 3.2 Measurement of Interfacial Toughness.- 3.3 Preparation of Si3N4/BN Fibrous Monolithic Ceramic.- 3.4 Conclusions.- Acknowledgement.- References.- 4 Microstructural Design : Si/SiC Composites Derived from Wood.- 4.1 Introduction.- 4.2 Experimental Work.- 4.3 Results and Discussion.- Acknowledgements.- References.- 5 Microstructure through Design in-situ Seeding Technique.- 5.1 Introduction.- 5.2 Experimental Work.- 5.3 Results and Discussion.- 5.4 Summary and Conclusions.- Acknowledgements.- References.- 6 Directional Solidification : ZrB2-LaB6 Eutectic Composites.- 6.1 Introduction.- 6.2 Experimental Work.- 6.3 Results and Discussion.- 6.4 Conclusions.- Acknowledgements.- References.- 7 A Co-Sedimentation Technique to Fabricate Continuous Gradient Composites.- 7.1 Introduction.- 7.2 Physical Modeling.- 7.3 Numerical Modeling.- 7.4 Results and Discussions.- 7.5 Validation of the Model.- 7.6 Conclusions.- Acknowledgements.- References.- 8 Spark Plasma Sintering : A Promising New Technique and its Mechanism.- 8.1 Introduction.- 8.2 Experimental Work.- 8.3 Results.- 8.4 Discussion.- 8.5 Conclusions.- Acknowledgments.- References.- 9 Pulsed Chemical Vapor Infiltration : Carbon/SiC Nanocomposites.- 9.1 Introduction.- 9.2 Experimental Work.- 9.3 Results and Discussion.- 9.4 Summary.- Acknowledgements.- References.- 10 Metal Oxidation Process : NiAl/Al2O3 Composites.- 10.1 Introduction.- 10.2 Experimental Work.- 10.3 Results and Discussion.- 10.4 Conclusions.- Acknowledgment.- References.- 11 Co-electroplating Nano-ceramic Particulates with Ni Layer.- 11.1 Introduction.- 11.2 Experimental Procedures.- 11.3 Results and Discussion.- 11.4 Conclusions.- References.- 12 Hot-Pressing Technique : SiC/AlN Composites.- 12.1 Introduction.- 12.2 Applications of Silicon Carbide Ceramics.- 12.3 SiC/AlN Particulate Composites.- 12.4 Conclusions.- Acknowledgements.- References.- 13 Nondestructive Evaluation of Strength and Residual Stress using Sphere Indentation.- 13.1 Introduction.- 13.2 Effect of Stress Gradient on Fracture.- 13.3 Critical Issues and Local Strength.- 13.4 Experimental Work.- 13.5 Proof Tests of Strength.- 13.6 Discussions and Conclusions.- Acknowledgements.- References.- 14 Machinable Ceramic Graded Composites.- 14.1 Introduction.- 14.2 Basic Design Principles.- 14.3 Machinable Graded Si3N4/h-BN Composite.- 14.4 Machinable Graded Al2O3/LaPO4 Composite.- 14.5 Conclusions.- References.- 15 Future of Structural Multi-phase Ceramics.- 15.1 Obstacles for the Applications of Ceramics.- 15.2 Novel Materials.- 15.3 Challenges.- References.

Erscheint lt. Verlag 1.11.2012
Reihe/Serie Springer Series in Materials Science
Zusatzinfo XIII, 152 p. 78 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 257 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Schlagworte Al2O3 • Ceramics • composite • Design • machine • microstructure • Model • Modeling • Nanocomposite • Oxidation • Processing • Sintering
ISBN-10 3-642-62278-X / 364262278X
ISBN-13 978-3-642-62278-6 / 9783642622786
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

Buch | Softcover (2024)
Wiley-VCH (Verlag)
79,90