Collected Papers - James Glimm, Arthur Jaffe

Collected Papers

Constructive Quantum Field Theory Selected Papers
Buch | Softcover
533 Seiten
2011
Springer-Verlag New York Inc.
978-1-4612-5423-2 (ISBN)
160,49 inkl. MwSt
Bibliography . ' . 371 Bibliography . 371 The entropy principle for vertex functions in quantum field models . 397 Two and three body equations in quantum field models . 479 Bibliography . 479 Absolute bounds on vertices and couplings . 532 vii Collected Papers - Volume 1 Introduction. The Yukawa Model 71 Preliminaries .
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models. . . . . . . . . . . . . . . . . . . . 326 q>/ quantum field model in the single-phase regions: Differentiability of the mass and bounds on critical exponents. . . . 341 Remark on the existence of q>. ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary particles. . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex functions in quantum field models . . . . . 372 Three-particle structure of q>4 interactions and the scaling limit . . . . . . . . . 397 Two and three body equations in quantum field models . . . . . . . . . . . . . . . 409 Particles and scaling for lattice fields and Ising models. . . . . . . . . . . . . . . . 437 The resummation of one particle lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a q>4 field theory. . . . . . .. . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortices and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII Reflection Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 vii Collected Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Inimite Reoormalization of the Hamiltonian Is Necessary 9 II Quantum Field Theory Models: Part I. The cp~ Model 13 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Qspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 39 Removing the space cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Lorentz covariance and the Haag-Kastler axioms. . . . . . . . . . . . . . . . . . . . . . 61 Part II. The Yukawa Model 71 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 First and second order estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Resolvent convergence and self adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 The Heisenberg picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Construction of P(?)2.- A ? (?4)2 quantum field theory without cutoffs: part I..- The ? (?4)2 quantum field theory without cutoffs: part II. The field operators and the approximate vacuum.- The ? (?4)2 quantum field theory without cutoffs: part III. The physical vacuum.- The Wightman axioms and particle structure in the P(?)2 quantum field model.- II Phase Cell Localization and ?34 Stability.- Positivity and self adjointness of the P(?)2 Hamiltonian.- The ? (?4)2 quantum field theory without cutoffs: part IV. Perturbations of the Hamiltonian.- Positivity of the ?34 Hamiltonian.- III Phase Transitions Exist.- Phase transitions for ?24 quantum fields.- A convergent expansion about mean field theory: part I. The expansion.- A convergent expansion about mean field theory: part II. Convergence of the expansion.- IV Phase Transitions and Critical Behavior.- Critical point dominance in quantum field models.- ?24 quantum field model in the single-phase regions: Differentiability of the mass and bounds on critical exponents.- Remark on the existence of ?44.- On the approach to the critical point.- Critical exponents and elementary particles.- V Particle Structure.- The entropy principle for vertex functions in quantum field models.- Three-particle structure of ?4 interactions and the scaling limit.- Two and three body equations in quantum field models.- Particles and scaling for lattice fields and Ising models.- The resummation of one particle lines.- VI Bounds on Coupling Constants.- Absolute bounds on vertices and couplings.- The coupling constant in a ?4 field theory.- VII Confinement and Instantons.- Instantons in a U(1) lattice gauge theory: A coulomb dipole gas.- Charges, vortices and confinement.- VIII Reflection Positivity.- A note on reflectionpositivity.

Erscheint lt. Verlag 1.11.2011
Reihe/Serie Contemporary Physicists
Zusatzinfo 1 Illustrations, black and white; X, 533 p. 1 illus.
Verlagsort New York
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
ISBN-10 1-4612-5423-X / 146125423X
ISBN-13 978-1-4612-5423-2 / 9781461254232
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich