Bob taught for more than 30 years in the Department of Chemical and Natural Gas Engineering at Texas A&M University-Kingsville. Prior to that, he was a senior research engineer at Monsanto and taught chemical engineering at the University of Puerto Rico in Mayaguez.
Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the most efficient strategy used to achieve optimal recovery of heat in industrial processes. - Utilizes leading commercial software. Get expert HTRI Xchanger Suite guidance, tips and tricks previously available via high cost professional training sessions. - Details the development of initial configuration for a heat exchanger and how to systematically modify it to obtain an efficient final design. - Abundant case studies and rules of thumb, along with copious software examples, provide a complete library of reference designs and heuristics for readers to base their own designs on.
Front Cover 1
DEDICATION 3
PROCESS HEAT TRANSFER: PRINCIPLES, APPLICATIONS AND RULES
4
Copyright 5
CONTENTS
6
PREFACE TO FIRST EDITION 10
PREFACE TO SECOND EDITION
12
CONVERSION FACTORS
14
PHYSICAL CONSTANTS
16
ACKNOWLEDGMENTS
18
1 - Heat Conduction 22
1.1 Introduction 22
1.2 Fourier’s Law of Heat Conduction 22
Example 1.1 24
1.3 The Heat Conduction Equation 25
Example 1.2 26
Example 1.3 28
Example 1.4 29
Example 1.5 30
1.4 Thermal Resistance 32
Example 1.6 33
Example 1.7 34
1.5 The Conduction Shape Factor 35
Example 1.8 37
Example 1.9 38
1.6 Unsteady-State Conduction 39
Example 1.10 41
Example 1.11 43
1.7 Mechanisms of Heat Conduction 44
References 44
Notations 45
Greek Letters 46
Other Symbols 46
2 - Convective and Radiative Heat Transfer 52
2.1 Introduction 52
2.2 Combined Conduction and Convection 52
Example 2.1 52
Example 2.2 54
2.3 Extended Surfaces 54
Example 2.3 58
Example 2.4 58
2.4 Forced Convection in Pipes and Ducts 59
Example 2.5 61
Example 2.6 63
Example 2.7 64
Example 2.8 65
2.5 Forced Convection in External Flow 66
Example 2.9 67
Example 2.10 68
2.6 Free Convection 69
Example 2.11 71
Example 2.12 72
2.7 Radiation 72
Example 2.13 75
References 76
Notations 76
Greek Letters 77
3 - Heat Exchangers 88
3.1 Introduction 88
3.2 Double-Pipe Equipment 88
3.3 Shell-and-Tube Equipment 89
3.4 Plate Heat Exchangers 95
3.5 The Overall Heat-Transfer Coefficient 97
Example 3.1 100
3.6 The LMTD Correction Factor 101
Example 3.2 102
3.7 Analysis of Double-Pipe Exchangers 103
Example 3.3 104
3.8 Preliminary Design of Shell-and-Tube Exchangers 107
Example 3.4 107
3.9 Rating a Shell-and-Tube Exchanger 109
Example 3.5 111
3.10 Heat-Exchanger Effectiveness 113
Example 3.6 113
References 115
Appendix 3.A Derivation of the Logarithmic Mean Temperature Difference 115
Notations 116
Greek Letters 117
4 - Design of Double-Pipe Heat Exchangers 122
4.1 Introduction 122
4.2 Heat-Transfer Coefficients for Exchangers without Fins 122
4.3 Hydraulic Calculations for Exchangers without Fins 122
4.4 Series/Parallel Configurations of Hairpins 124
4.5 Multi-Tube Exchangers 125
4.6 Over-Surface and Over-Design 126
Example 4.1 126
Example 4.2 132
4.7 Finned-Pipe Exchangers 135
4.8 Heat-Transfer Coefficients and Friction Factors for Finned Annuli 137
4.9 Wall Temperature for Finned Pipes 139
Example 4.3 139
4.10 Computer Software 144
Example 4.4 144
HEXTRAN Input File for Example 4.4 148
HEXTRAN Output Data for Example 4.4 150
Example 4.5 151
HEXTRAN Input File for Example 4.5 152
HEXTRAN Output Data for Example 4.5 155
Example 4.6 158
HEXTRAN Input File for Example 4.6 160
HEXTRAN Output Data for Example 4.6 162
References 163
Appendix 4.A. Hydraulic Equations in SI Units 163
Appendix 4.B. Incremental Analysis 164
Notations 165
Greek Letters 166
5 - Design of Shell-and-Tube Heat Exchangers 172
5.1 Introduction 172
5.3 Hydraulic Calculations 173
5.4 Finned Tubing 175
5.5 Tube-Count Tables 177
5.6 Factors Affecting Pressure Drop 177
5.7 Design Guidelines 179
5.8 Design Strategy 182
Example 5.1 182
Example 5.2 189
5.9 Computer Software 194
Example 5.3 195
HEXTRAN Input File for Example 5.3 196
HEXTRAN Output Data for Example 5.3 198
Example 5.4 199
HEXTRAN Input File for Example 5.4, Run 1 201
HEXTRAN Output Data for Example 5.4, Run 1 203
HEXTRAN Output Data for Example 5.4, Run 3 205
Example 5.5 206
Temperature Profiles for Example 5.5: Design Conditions 208
Temperature Profiles for Example 5.5: Clean Conditions 209
References 210
Appendix 5.A Hydraulic Equations in SI Units 210
Appendix 5.B Maximum Tube-Side Fluid Velocities 211
Appendix 5.C Maximum Unsupported Tube Lengths 211
Appendix 5.D Comparison of Head Types for Shell-and-Tube Exchangers 212
Notations 213
Greek Letters 214
6 - The Delaware Method 220
6.1 Introduction 220
6.2 Ideal Tube Bank Correlations 220
6.3 Shell-Side Heat-Transfer Coefficient 222
6.4 Shell-Side Pressure Drop 223
6.5 The Flow Areas 226
6.6 Correlations for the Correction Factors 230
6.7 Estimation of Clearances 232
Example 6.1 232
References 238
Notations 238
Greek Letters 239
7 - The Stream Analysis Method 244
7.1 Introduction 244
7.2 The Equivalent Hydraulic Network 244
7.3 The Hydraulic Equations 244
7.4 Shell-Side Pressure Drop 246
7.5 Shell-Side Heat-Transfer Coefficient 247
7.6 Temperature Profile Distortion 247
Example 7.1 248
7.7 Good Design Practice 249
7.8 The Wills-Johnston Method 249
Example 7.2 254
7.9 Computer Software 258
Example 7.3 259
Xist Output Summary for Example 7.3 265
Xist Tube Layout for Example 7.3 266
Example 7.4 267
Xist Tube Layouts for Example 7.4 269
Xist Output Summary for Example 7.4: Ribbon Tube Layout 270
Xist Exchanger Drawing for Example 7.4 271
Example 7.5 271
Solution 272
Temperature Profiles for Modified E-shell Design under Clean Conditions 272
Xist Rating Data Sheet for Example 7.5: F-shell Design 273
Xist Tube Layout for Example 7.5: F-shell Design 274
Xist Output Summary for Example 7.5: Simulation Run for F-shell Design 275
Temperature Profiles for F-shell Design under Clean Conditions 276
Example 7.6 276
Xist Output Summary for Example 7.6: Design Run 278
Xist Exchanger Drawing Showing Poor Baffle Configuration 279
Xist Output Summary for Example 7.6: Final Rating Run 280
Design Summary for Example 7.6 281
Exchanger Drawing for Example 7.6: Final Design 281
Tube Layout for Example 7.6 282
References 282
Notations 283
Greek Letters 284
8 - HEAT-Exchanger Networks 288
8.1 Introduction 288
8.2 An Example: TC3 288
8.3 Design Targets 288
8.4 The Problem Table 289
8.5 Composite Curves 290
8.6 The Grand Composite Curve 293
8.7 Significance of the Pinch 294
8.8 Threshold Problems and Utility Pinches 295
8.9 Feasibility Criteria at the Pinch 296
8.10 Design Strategy 297
8.11 Minimum-Utility Design for TC3 298
8.12 Network Simplification 301
8.13 Number of Shells 303
8.14 Targeting for Number of Shells 304
8.15 Area Targets 308
8.16 The Driving Force Plot 310
8.17 Super Targeting 312
8.18 Targeting by Linear Programming 312
8.19 Computer Software 314
Example 8.1 314
HEXTRAN Input File for Example 8.1, Part (a) 316
HEXTRAN Results for Example 8.1, Part (a) 317
HEXTRAN Results for Example 8.1, Part (b) 318
Example 8.2 319
HEXTRAN Input File for Example 8.2 319
HEXTRAN Results for Example 8.2 with EMAT = 17°C 321
HEN for TC3 Generated By HEXTRAN with EMAT= 17°C 321
HEN for TC3 Generated By HEXTRAN with EMAT = 18°C 322
Example 8.3 323
Example 8.3: Targets Window in HX-Net 323
Example 8.3: Super Targeting Results from HX-Net 324
Example 8.3: Targeting Graphs Generated by HX-Net. 324
8.20 A Case Study: Gasoline Production from Bio-Ethanol 325
References 330
Notations 331
Greek Letters 332
9 - Boiling Heat Transfer 338
9.1 Introduction 338
9.2 Pool Boiling 338
9.3 Correlations for Nucleate Boiling on Horizontal Tubes 339
Example 9.1 342
Example 9.2 345
Example 9.3 349
Example 9.4 350
9.4 Two-Phase Flow 350
Example 9.5 355
Example 9.6 359
9.5 Convective Boiling in Tubes 361
Example 9.7 364
Example 9.8 369
Example 9.9 370
9.6 Film Boiling 371
Example 9.10 372
References 373
Notations 373
Greek Letters 375
10 - Reboilers 382
10.1 Introduction 382
10.2 Types of Reboilers 382
10.3 Design of Kettle Reboilers 386
Example 10.1 388
Example 10.2 389
10.4 Design of Horizontal Thermosyphon Reboilers 399
Example 10.3 400
10.5 Design of Vertical Thermosyphon Reboilers 404
Example 10.4 408
10.6 Computer Software 415
Example 10.5 415
HEXTRAN Input File for Example 10.5 417
HEXTRAN Output Data for Example 10.5 419
Example 10.6 421
HEXTRAN Input File for Example 10.6 423
HEXTRAN Output Data for Example 10.6 425
Example 10.7 428
Xist Output Summary for Example 10.7 431
Xist Tube Layout for Kettle Reboiler 432
Example 10.8 433
Xist Output Summary for Example 10.8 435
Example 10.9 436
Xist Output Summary for Example 10.9 437
Design Summary for Example 10.9: Vertical Thermosyphon Reboiler 438
Xist Exchanger Drawing for Example 10.9 439
Xist Tube Layout for Example 10.9 440
Example 10.10 440
Xist Output Summary for Re-rating of an Existing Naphtha Reboiler 441
Xist Output Summary for Naphtha Reboiler Using 250 psia Steam 442
References 442
Notations 444
Greek Letters 446
11 - Condensers 452
11.1 Introduction 452
11.2 Condenser Geometries and Configurations 452
11.3 Condensation on a Vertical Surface: Nusselt Theory 458
11.4 Condensation on Horizontal Tubes 462
Example 11.1 463
11.5 Modifications of Nusselt Theory 464
Example 11.2 466
Example 11.3 469
11.6 Condensation Inside Horizontal Tubes 471
Example 11.4 474
Example 11.5 476
11.7 Condensation on Finned Tubes 476
11.8 Pressure Drop 477
11.9 Mean Temperature Difference 478
Example 11.6 480
Example 11.7 488
11.10 Multi-Component Condensation 493
Example 11.8 495
11.11 Computer Software 497
Example 11.9 497
Xist Output Summary for Example 11.9 499
HEXTRAN Input File for Example 11.9 500
HEXTRAN Output Data for Example 11.9 502
Example 11.10 504
Xist Output Summary for Example 11.10: Design 1 (J-shell Condenser) 505
Xist Output Summary for Example 11.10: Design 2 (X-shell Condenser) 506
Design Summaries for Example 11.10 507
Exchanger Drawing and Tube Layout for Design 1 (J-shell Condenser) 508
Exchanger Drawing and Tube Layout for Design 2 (X-shell Condenser) 509
Example 11.11 509
Tube Layout for Example 11.11: Design with Single Segmental Baffles 510
Setting Plan for Example 11.11: Design with Single Segmental Baffles 511
Tube Layout for Example 11.11: Design with Double Segmental Baffles 512
Rating Data Sheet for Example 11.11: Design with Double Segmental Baffles 513
References 514
Appendix 11.A LMTD Correction Factors for TEMA J- and X-Shells 514
Example 11.A.1 515
Appendix 11.B. Flooding in Reflux Condensers 516
Notations 520
Greek Letters 522
Other Symbols 523
12 - Air-Cooled Heat Exchangers 530
12.1 Introduction 530
12.2 Equipment Description 530
12.3 Air-Side Heat-Transfer Coefficient 536
12.4 Air-Side Pressure Drop 537
12.5 Overall Heat-Transfer Coefficient 538
12.6 Fan and Motor Sizing 538
12.7 Mean Temperature Difference 540
12.8 Design Guidelines 541
12.9 Design Strategy 541
Example 12.1 542
12.10 Computer Software 547
Example 12.2 548
HEXTRAN Input File for Example 12.2 550
HEXTRAN Output Data for Example 12.2 552
Example 12.3 554
Xace Output Summary for Example 12.3 556
Xace Exchanger Drawings for Example 12.3 557
Xace Tube Layout for Example 12.3 557
Example 12.4 558
Xace Output Summary for Example 12.4: Design Run with 60 ft Tubes 560
Xace Output Summary for Example 12.4: Rating Run for Design 2 561
Design Summaries for Example 12.4 562
Fan Bay Layout for Design 1 563
Fan Bay Layout for Design 2 563
Tube Bundle Layout for Designs 2 and 3 564
Exchanger Drawing for Design 2 (1 of 2 Bays) 564
References 564
Appendix 12.A LMTD Correction Factors for Air-Cooled Heat Exchangers 564
Appendix 12.B Standard US Motor Sizes 570
Appendix 12.C Correction of Air Density for Elevation 570
Example 12.C.1 570
Notations 571
Greek Letters 572
Appendix A - Thermophysical Properties of Materials 576
Appendix B: - Dimensions of Pipe and Tubing 602
Appendix C: - Tube-Count Tables 612
Appendix D: - Equivalent Lengths of Pipe Fittings 618
Appendix E: - Properties of Petroleum Streams 620
Acknowledgments
Figure 3.1 | Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. |
Table 3.1 | Reprinted, with permission, from Perry’s Chemical Engineers’ Handbook, 7th edn., R. H. Perry and D. W. Green, eds. Copyright © 1997 by The McGraw-Hill Companies, Inc. |
Figure 3.6 | Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. |
Table 3.2 | Reproduced, with permission, from J. W. Palen and J. Taborek, Solution of shell side flow pressure drop and heat transfer by stream analysis method, Chem. Eng. Prog. Symposium Series, 65, No. 92, 53–63, 1969. Copyright © 1969 by AIChE. |
Table 3.5 | Reprinted, with permission, from Perry’s Chemical Engineers’ Handbook, 7th edn., R. H. Perry and D. W. Green, eds. Copyright © 1997 by The McGraw-Hill Companies, Inc. |
Figure 4.1 | Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 4.2 | Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 4.4 | Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. |
Figure 4.5 | Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. |
Figure 5.3 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figures 6.1–6.5 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlunder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa pic. |
Table 6.1 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 6.10 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 7.1 | Reproduced, with permission, from J. W. Palen and J. Taborek, Solution of shell side flow pressure drop and heat transfer by stream analysis method, Chem. Eng. Prog. Symposium Series, 65, No. 92, 53–63, 1969. Copyright © 1969 by AIChE. |
Table, p. 283 | Reproduced, with permission, from R. Mukherjee, Effectively design shell-and-tube heat exchangers, Chem. Eng. Prog., 94, No. 2, 21–37, 1998. Copyright © 1998 by AIChE. |
Figure 8.20 | Reprinted from Computers and Chemical Engineering, Vol. 26, X. X. Zhu and X. R. Nie, Pressure Drop Considerations for Heat Exchanger Network Grassroots Design, pp. 1661–1676, Copyright © 2002, with permission from Elsevier. |
Figure 9.2 | Copyright © 1997 from Boiling Heat Transfer and Two-Phase Flow, 2nd edn., by L. S. Tong and Y. S. Tang. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figures 10.1–10.5 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schliinder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 10.6 | Reproduced, with permission, from A. W. Sloley, Properly design thermosyphon reboilers, Chem. Eng Prog. 93, No. 3, 52–64, 1997. Copyright © 1997 by AIChE. |
Table 10.1 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Appendix 10.A | Reprinted, with permission, from Chemical Engineers’ Handbook, 5th edn., R. H. Perry and C. H. Chilton, eds. Copyright © 1973 by The McGraw-Hill Companies, Inc. |
Figure 11.1 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 11.3 | Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 11.6 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 11.7 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 11.8 | Reprinted, with permission, from Distillation Operation by H. Z. Kister. Copyright © 1990 by The McGraw-Hill Companies, Inc. |
Figure 11.14 | Reprinted, with permission, from G. Breber, J. W. Palen and J. Taborek, Prediction of tubeside condensation of pure components using flow regime criteria, J. Heat Transfer, 102, 471–476, 1980. Originally published by ASME. |
Figure 11.15 | Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figures 11.A1–11.A3 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figure 12.5 | Copyright © 1991 from Heat Transfer Design Methods by J. J. McKetta, Editor. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Figures 12.A1–12.A5 | Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Table A. 1 | Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevič. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Table A.3 | Reprinted, with permission, from Heat Transfer, 7th edn., by J. P. Holman. Copyright © 1990 by The McGraw-Hill Companies, Inc. |
Table A.4 | Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevič. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Table A.7 | Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevič. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Table A.8 | Reprinted, with permission, from ASME Steam Tables, American Society of Mechanical Engineers, New York, 1967. Originally published by ASME. |
Table A.9 | Reprinted, with permission, from Flow of Fluids Through Valves, Fittings and Pipe, Technical Paper 410, 1988, Crane Company. All rights reserved. |
Table A.11 | Copyright © 1975 from Tables of Thermophysical Properties of Liquids and Gases, 2nd edn., by N. B. Vargaftik. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Table A.13 | Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevič. Reproduced by permission of Taylor & Francis, a division of Informa plc. |
Table A.15 | Reprinted, with permission, from Chemical Engineers’ Handbook, 5th edn., R. H. Perry and C. H. Chilton, eds. Copyright © 1973 by The... |
Erscheint lt. Verlag | 27.1.2014 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 0-12-397792-4 / 0123977924 |
ISBN-13 | 978-0-12-397792-2 / 9780123977922 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 52,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 129,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich