Martin H. Sadd is Professor Emeritus of Mechanical Engineering and Applied Mechanics at the University of Rhode Island. He received his Ph.D. in mechanics from the Illinois Institute of Technology and began his academic career at Mississippi State University. In 1979 he joined the faculty at Rhode Island and served as department chair from 1991 to 2000. Professor Sadd's teaching background is in the area of solid mechanics with emphasis in elasticity, continuum mechanics, wave propagation, and computational methods. He has taught elasticity at two academic institutions, in several industries, and at a government laboratory. Professor Sadd's research has been in computational modeling of materials under static and dynamic loading conditions using finite, boundary, and discrete element methods. Much of his work has involved micromechanical modeling of geomaterials including granular soil, rock, and concretes. He has authored more than 75 publications and has given numerous presentations at national and international meetings.
Elasticity: Theory, Applications, and Numerics, Third Edition, continues its market-leading tradition of concisely presenting and developing the linear theory of elasticity, moving from solution methodologies, formulations, and strategies into applications of contemporary interest, such as fracture mechanics, anisotropic and composite materials, micromechanics, nonhomogeneous graded materials, and computational methods. Developed for a one- or two-semester graduate elasticity course, this new edition has been revised with new worked examples and exercises, and new or expanded coverage of areas such as spherical anisotropy, stress contours, isochromatics, isoclinics, and stress trajectories. Using MATLAB software, numerical activities in the text are integrated with analytical problem solutions. These numerics aid in particular calculations, graphically present stress and displacement solutions to problems of interest, and conduct simple finite element calculations, enabling comparisons with previously studied analytical solutions. Online ancillary support materials for instructors include a solutions manual, image bank, and a set of PowerPoint lecture slides. - Thorough yet concise introduction to linear elasticity theory and applications- Only text providing detailed solutions to problems of nonhomogeneous/graded materials- New material on stress contours/lines, contact stresses, curvilinear anisotropy applications- Further and new integration of MATLAB software- Addition of many new exercises- Comparison of elasticity solutions with elementary theory, experimental data, and numerical simulations- Online solutions manual and downloadable MATLAB code
14.6. Torsion problem
(14.6.1)
(14.6.2)
(14.6.3)
It again becomes useful to introduce the Prandtl stress function, ϕ = ϕ(x,y)(14.6.4)
so that the equilibrium equations are satisfied identically. We can again generate the compatibility relation among the two nonzero stress components by differentiating and combining relations (14.6.3)2,3 to eliminate the displacement terms. Substituting (14.6.4) into that result gives the governing relation in terms of the stress function(14.6.5)
where the shear modulus μ must now be left inside the derivative operations because the material is inhomogeneous. Recall that, for the homogeneous case, relation (14.6.5) reduced to the Poisson equation ▿2ϕ = 2μα.(14.6.6)
For simply connected sections, the constant may again be chosen as 0. Invoking the resultant force conditions on the cylinder end planes (domain R), as given by relations (9.3.14), again yields(14.6.7)
and the torsional rigidity J can again be defined by J = T/α.(14.6.8)
Relations (14.6.4) and (14.6.5) for the stress function formulation then reduce to a system in terms of only the radial coordinate r(14.6.9)
with boundary condition ϕ(a) = 0.(14.6.10)
where C1 and C2 are arbitrary constants. We require that the solution for ϕ remain bounded as r → 0, thus implying that each integral term in (14.6.10) be finite at the origin. Restricting ourselves to the plausible case where the shear modulus is expected to be nonzero but bounded at the origin, , while the second integral, , is singular. Based on these arguments, C1 must be set to 0. Finally, the boundary condition ϕ(a) = 0 determines the final constant C2 and produces the general solution(14.6.11)
With this result, the shear stress and torsional rigidity then become(14.6.12)
To explore the effects of inhomogeneity, let us consider some specific gradations in shear modulus. Following some of the examples discussed by Horgan and Chan (1999c), we consider two cases of the following form(14.6.13)
where n ≥ 0 and μo > 0 and m are material constants. Note that, for either example, as n → 0 we recover the homogeneous case μ(r) = μo. Also, as r → 0, μ → μo, and so these material examples all have finite shear modulus at r = 0.(14.6.14)
(14.6.15)
Note that the solution for the stress function requires integration through relation (14.6.11), and thus closed-form solutions can only be determined for integer and other special values of the parameter m. From relation (14.6.15), it can be shown that if m ≥ −1, the maximum shear stress always occurs at the boundary r = a. Recall that this result was found to be true in general for all homogeneous cylinders of any cross-section geometry (see Exercise 9.5). However, for the inhomogeneous case when m < −1, the situation changes and the location of maximum shear stress can occur in the cylinder’s interior.(14.6.16)
It can easily be shown that if n ≤ 1 the maximum shear stress will exist on the outer boundary, while if n > 1 the maximum moves to an interior location within the shaft. Nondimensional shear stress distributions for this exponential gradation are shown in Figure 14.27 for several values of the parameter n. As observed in the previous model, for the case with decreasing radial gradation (n > 0), the shear stress will always be less than the corresponding homogeneous distribution. With n < 0, we have an increasing radial gradation that results in stresses larger than the homogeneous values.Erscheint lt. Verlag | 22.1.2014 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Technik ► Bauwesen | |
Technik ► Fahrzeugbau / Schiffbau | |
Technik ► Luft- / Raumfahrttechnik | |
Technik ► Maschinenbau | |
ISBN-10 | 0-12-410432-0 / 0124104320 |
ISBN-13 | 978-0-12-410432-7 / 9780124104327 |
Haben Sie eine Frage zum Produkt? |
Größe: 24,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 22,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich