Optimization of Chemical Plant Simulation Using Double Collocation
Seiten
2004
diplom.de (Verlag)
978-3-8386-8027-9 (ISBN)
diplom.de (Verlag)
978-3-8386-8027-9 (ISBN)
Doctoral Thesis / Dissertation from the year 1993 in the subject Chemistry - Macromolecular Chemistry, Polymer Chemistry, grade: 1,0, Aston University (School of Engineering and Applied Science), language: English, abstract: Inhaltsangabe:Problemstellung:
Für die Lösung einer breiten Klasse der chemischen Betriebssimulationsmodelle, einschließlich Differentialgleichungen und Optimierung ist eine Methode konstruiert worden:
Die doppelte orthogonale Kollokation und die Finite Elemente Methode werden angewendet, um das Modell in ein NLP Problem zu konvertieren. Das NLP Problem wird dann entweder durch den nichtlinearen Optimierungscode VF13AD, der auf der sukzessiven quadratischer Programmierung basiert oder durch den nichtlinearen Optimierungscode GRG2, der auf dem generalisierten Gradientenverfahren basiert, gelöst. Dieses Verfahren wird simultane Optimierung und Lösungsstrategie genannt.
Das Zielfunktional kann dabei Integralterme enthalten und die Zustandsvariablen sowie die Entscheidungsvariablen können zeitliche Verzögerung haben.
Das Modell kann Zustandsvariablen und Entscheidungsvariablen enthaltende Gleichungen, algebraische Gleichungen und Ungleichungen enthalten.
Die Höchstzahl der unabhängigen Veränderlichen in den partiellen Differentialgleichungen ist zwei. Die Probleme, die drei unabhängige Veränderliche enthalten, können mit der Differenzenmethode in zwei unabhängige Veränderliche enthaltende Probleme konvertiert werden. Die Höchstzahl der NLP Variablen sowie die der Nebenbedingungen beträgt 1500.
Die Methode ist auch für das Lösen der gewöhnlichen und partiellen Differentialgleichungen verwendbar.
Die Zustandsfunktionen werden durch eine lineare Kombination der Lagrange Interpolationspolynomen approximiert. Die Kontrollfunktion kann entweder durch eine lineare Kombination der Lagrange Interpolationspolynomen oder durch eine Funktion, die stückweise konstant ist, approximiert werden. Der Wert der Funktion und die Zahl der inneren Kollokationspunkte kann je nach dem finiten Element variieren.
Der residuale Fehler wird an äquidistanten Knotenpunkten ausgewertet und ermöglicht so die Genauigkeit der Lösung zwischen Kollokationspunkten zu überprüfen. Die Lösungsfunktionen können tabellarisiert werden.
Es gibt auch die Möglichkeit, die Kontrollvektor-Parametrisierung zu verwenden, um die dynamischen Optimierungsprobleme zu lösen, wenn das Modell aus Anfangswertaufgaben besteht. Diese Methode soll angewendet werden, wenn das Modell viele Differentialgleichungen enthält oder die obere Grenze der Integration gleichzeitig eine zu optimal wählende Variable ist.
Das Programm ist von VAX FORTRAN 77 in IBM FORTRAN 77 und SUN SPARC 2000 FORTRAN 77 konvertiert worden.
Computerdurchläufe zeigen, dass die Methode in der Literatur veröffentlichte Optimierungsergebnisse reproduzieren kann.
Die nichtlinearen Optimierungscodes GRG2 und VF13AD, die in das Optimierungs-Programmsystem integriert sind, erweisen sich als robust und zuverlässig.
Das Programmsystem enthält ein Kontrollmodul, ein Kontrollvektor-Parametrisierungsmodul und die nichtlinearen Optimierungscodes GRG2 und VF13AD, welche die nichtlinearen Optimierungsprobleme lösen. Es gibt auch ein Modul, welches das dynamische Optimierungsproblem in ein nichtlineares Optimierungsproblem konvertiert.
Inhaltsverzeichnis:Table of Contents:
Title Page1
Thesis Summary2
Dedication3
Acknowledgements4
Table of Contents5
List of Figures9
List of Tables11
1.Introduction13
1.1Optimization13
1.2Models in Chemical Engineering13
1.3Methods of Solution16
1.4Thesis Outline18
2.Literature Review20
2.1Introduction20
2.2Classification of Problems20
2.3Classification of Solution Methods20
2.3.1Lumped Parameter Systems20
2.3.2Distributed Parame...
Für die Lösung einer breiten Klasse der chemischen Betriebssimulationsmodelle, einschließlich Differentialgleichungen und Optimierung ist eine Methode konstruiert worden:
Die doppelte orthogonale Kollokation und die Finite Elemente Methode werden angewendet, um das Modell in ein NLP Problem zu konvertieren. Das NLP Problem wird dann entweder durch den nichtlinearen Optimierungscode VF13AD, der auf der sukzessiven quadratischer Programmierung basiert oder durch den nichtlinearen Optimierungscode GRG2, der auf dem generalisierten Gradientenverfahren basiert, gelöst. Dieses Verfahren wird simultane Optimierung und Lösungsstrategie genannt.
Das Zielfunktional kann dabei Integralterme enthalten und die Zustandsvariablen sowie die Entscheidungsvariablen können zeitliche Verzögerung haben.
Das Modell kann Zustandsvariablen und Entscheidungsvariablen enthaltende Gleichungen, algebraische Gleichungen und Ungleichungen enthalten.
Die Höchstzahl der unabhängigen Veränderlichen in den partiellen Differentialgleichungen ist zwei. Die Probleme, die drei unabhängige Veränderliche enthalten, können mit der Differenzenmethode in zwei unabhängige Veränderliche enthaltende Probleme konvertiert werden. Die Höchstzahl der NLP Variablen sowie die der Nebenbedingungen beträgt 1500.
Die Methode ist auch für das Lösen der gewöhnlichen und partiellen Differentialgleichungen verwendbar.
Die Zustandsfunktionen werden durch eine lineare Kombination der Lagrange Interpolationspolynomen approximiert. Die Kontrollfunktion kann entweder durch eine lineare Kombination der Lagrange Interpolationspolynomen oder durch eine Funktion, die stückweise konstant ist, approximiert werden. Der Wert der Funktion und die Zahl der inneren Kollokationspunkte kann je nach dem finiten Element variieren.
Der residuale Fehler wird an äquidistanten Knotenpunkten ausgewertet und ermöglicht so die Genauigkeit der Lösung zwischen Kollokationspunkten zu überprüfen. Die Lösungsfunktionen können tabellarisiert werden.
Es gibt auch die Möglichkeit, die Kontrollvektor-Parametrisierung zu verwenden, um die dynamischen Optimierungsprobleme zu lösen, wenn das Modell aus Anfangswertaufgaben besteht. Diese Methode soll angewendet werden, wenn das Modell viele Differentialgleichungen enthält oder die obere Grenze der Integration gleichzeitig eine zu optimal wählende Variable ist.
Das Programm ist von VAX FORTRAN 77 in IBM FORTRAN 77 und SUN SPARC 2000 FORTRAN 77 konvertiert worden.
Computerdurchläufe zeigen, dass die Methode in der Literatur veröffentlichte Optimierungsergebnisse reproduzieren kann.
Die nichtlinearen Optimierungscodes GRG2 und VF13AD, die in das Optimierungs-Programmsystem integriert sind, erweisen sich als robust und zuverlässig.
Das Programmsystem enthält ein Kontrollmodul, ein Kontrollvektor-Parametrisierungsmodul und die nichtlinearen Optimierungscodes GRG2 und VF13AD, welche die nichtlinearen Optimierungsprobleme lösen. Es gibt auch ein Modul, welches das dynamische Optimierungsproblem in ein nichtlineares Optimierungsproblem konvertiert.
Inhaltsverzeichnis:Table of Contents:
Title Page1
Thesis Summary2
Dedication3
Acknowledgements4
Table of Contents5
List of Figures9
List of Tables11
1.Introduction13
1.1Optimization13
1.2Models in Chemical Engineering13
1.3Methods of Solution16
1.4Thesis Outline18
2.Literature Review20
2.1Introduction20
2.2Classification of Problems20
2.3Classification of Solution Methods20
2.3.1Lumped Parameter Systems20
2.3.2Distributed Parame...
Sprache | englisch |
---|---|
Maße | 148 x 210 mm |
Gewicht | 481 g |
Themenwelt | Naturwissenschaften ► Chemie ► Anorganische Chemie |
ISBN-10 | 3-8386-8027-8 / 3838680278 |
ISBN-13 | 978-3-8386-8027-9 / 9783838680279 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Hardcover (2024)
Springer Spektrum (Verlag)
64,99 €