Advances in Inorganic Chemistry -

Advances in Inorganic Chemistry (eBook)

Rudi van Eldik (Herausgeber)

eBook Download: PDF | EPUB
2008 | 1. Auflage
296 Seiten
Elsevier Science (Verlag)
978-0-08-092056-6 (ISBN)
220,00 € inkl. MwSt
Systemvoraussetzungen
219,45 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Advances in Inorganic Chemistry series present timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced.
. Features comprehensive reviews on the latest developments
. Includes contributions from leading experts in the field
. Serves as an indispensable reference to advanced researchers
The Advances in Inorganic Chemistry series present timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced. Features comprehensive reviews on the latest developments Includes contributions from leading experts in the field Serves as an indispensable reference to advanced researchers

Front cover 1
Advisory Board 3
Advances in inorganic chemistry 4
Copyright page 5
Contents 6
Preface 8
Chapter 1. Tripodal carbene and aryloxide ligands for small-molecule activation at electron-rich uranium and transition metal centers 10
Introduction 10
Synthesis and Characterization of Ligand Precursors and Low-Valent Metal™Complexes for Small-Molecule Activation 14
Small-Molecule Activation 24
Conclusions 4
References 37
Chapter 2. beta-Cyclodextrin-linked Ru complexes for oxidations and reductions 40
Introduction 40
Mimicking the Enzymatic Cleavage of Carotenoids 41
Hydrogen Transfer Reactions Catalyzed by Ruthenium Complexes Linked to beta-Cyclodextrin 52
References 66
Chapter 3. Catalytic dismutation vs. reversible binding of™superoxide 68
Introduction 68
Catalytic Superoxide Dismutation by Seven-Coordinate Manganese and Iron Complexes as SOD Mimetics 70
Reversible Binding of Superoxide to Iron-Porphyrin Complex 95
Summary 105
Acknowledgment 106
References 106
Chapter 4. Tripodal N,N,O-ligands for metalloenzyme models and organometallics 110
The ’2-His-1-Carboxylate Facial Triad’ in Non-Heme Iron Oxygenases 110
N,N,O-Ligands as Mimics for the ’2-His-1-Carboxylate Facial Triad’ 116
Structural Zinc Models 127
Homochiral Bis(pyrazol-1-yl)acetato Ligands 138
Bis(pyrazol-1-yl)acetato Ligands in Coordination Chemistry and Organometallics 141
2.Synthesis of cyclic Fischer carbene complexes (nequals1, 2) (35a,b) 147
2.Synthesis of cyclic Fischer carbene complexes (nequals1, 2) (35a,b) 147
Synthesis of allenylidene complexes [Ru(bdmpza)Cl(CCCR2)(PPh3)] (RPh, Tol) (36a,b) 149
3,3-Bis(1-methylimidazol-2-yl)propionic Acid as N,N,O-Ligand 156
Immobilization of N,N,O Complexes 160
Conclusion 166
Acknowledgements 167
References 167
Chapter 5. Hydroxypyranones, hydroxypyridinones, and their complexes 176
Introduction 176
Ligands and Complexes - Synthesis and Structure 177
Solution Properties 194
Uses and Applications 222
Nomenclature and Abbreviations 237
Acknowledgements 238
References 238
Chapter 6. Late transition metal-oxo compounds and open-framework materials that catalyze aerobic oxidations 254
Introduction 254
Late Transition Metal-Oxo (LTMO) Complexes 255
Open-Framework Materials that Catalyze Aerobic Oxidations 273
Acknowledgments 278
References 278
Index 282
Contents of previous volumes 292

Tripodal carbene and aryloxide ligands for small-molecule activation at electron-rich uranium and transition metal centers


Karsten Meyer; Suzanne C. Bart    University of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany

I Introduction


Chelating ligands that induce tripodal configurations at coordinated metal centers are known to provide powerful platforms for small-molecule activation. These ligands consist of an atom or small molecule which acts as an anchor, and holds three pendant arms capable of coordinating to a metal in a trigonal conformation (Fig. 1). Typically, these ligands hold several advantages over monodentate and bidentate ligands. Due to the enhanced chelating effects, tripodal ligands often bind to metal ions very strongly and can stabilize reactive intermediate species with unusual electronic and geometric structures. In addition, the steric bulk of both the anchor and pendant arms is highly modular, providing the electronic and structural flexibility to effectively block undesired side- and decomposition reactions, more effectively controlling reactivity at the metal center. Due to these distinctive benefits, the design and development of new tripodal ligand systems has been an active area in inorganic and organometallic coordination chemistry (14).

Fig. 1 Schematic diagram of tripodal ligand with sterically encumbering R groups oriented perpendicular to the ME3 coordination plane.

The chemistry presented herein has been presented on the occasion of the SFB symposium “Redox active metal complexes – Control of Reactivity via Molecular Architecture.”

Commonly used tripodal ligands such as tripodal tris(amido)amine (Fig. 2, A) and tris-phosphine ligands (Fig. 2, B) have drawn much attention recently for supporting metal centers capable of small-molecule activation (1). Metal complexes supported by tris(pyrazolyl)borate (Tp) ligands promote catalytic transformations, including C–H activation (5), C–C (6), C–O (7), and C–N (8) bond formation, assist dioxygen activation (9) and serve as structural mimics of metal-containing enzymes (10). The tetradentate tris(amido)amine framework, composed of three negatively charged “hard”(11) amido donors, coordinates to transition metal (2,12) and main group elements (13) in 3+ or higher oxidation states. The resulting metal complexes have a pair of degenerate π-type frontier orbitals that aid in metal–ligand multi-bond formation (2) and have proven essential for supporting well-defined catalytic reactions such as dinitrogen reduction at a single molybdenum center (14,15). In contrast, tripodal ligands bearing “soft” donor atoms such as sulfur (16) and phosphorus (4,17,18) are more suitable for stabilizing electron-rich, low-valent metal centers. A prime example is the work by Sacconi (19) which shows the development of the tris(phosphino)amine ligand (Fig. 2, C).

Fig. 2 Tripodal ligand scaffolds with arrows indicating the direction of steric bulk.

Using this rich chemistry as inspiration, the development of tripodal N-heterocyclic carbene (NHC) analogues was explored (Fig. 2, D). These chelators should mimic the properties of monodentate NHC ligands, producing distinct beneficial synthetic, electronic, and steric properties over these previously known tripodal ligand systems, including reduction of oxidative ligand degradation which can occur with air-sensitive phosphine ligands. Recent studies show that the seemingly “soft” NHCs can coordinate to both “soft”, electron-rich metal fragments and “hard”, electron-deficient metal centers (20), resulting in their coordination to virtually every metal in the periodic table with a range of oxidation states (20a). The newly developed tripodal NHC ligands thus are complementary to both the tris(amido)amine and the tris(phosphino)borate ligand systems.

The geometries of tripodal ligand systems are determined by the type of pendant arm and the number of atoms in the linker to the anchor (Fig. 2, Types A and B).

Depending on these variables, the sterically encumbering substituents may be directed away from the metal center, leaving the reactive core wide open or be directed towards the metal center in order to protect it (see arrows in Fig. 2). Protecting the metal center prevents binuclear decomposition of reactive species. For instance, Peters et al. report that the bulky isopropyl derivatized tris(phosphino)-borate ligand does not prevent dimerization of the unique yet highly reactive terminal nitrido complex [(PhBPiPr)3Fe≡N] to form a dinitrogen-bridged dinuclear species [(PhBPiPr3)Fe]2(μ-N2) (Fig. 3, E) (21). To prevent [(ArN3N)Mo≡N] from forming a similar dinuclear dinitrogen complex [{(ArN3N)Mo}2 (μ:η1,η1–N2)], Schrock et al. had to introduce three extremely bulky hexaisopropyl terphenyl substituents at the tris(amido)amine ligand (Fig. 3, D) (14). The synthesis of these sterically bulky ligand derivatives is both challenging and time-consuming. In contrast, the sterics of tripodal NHC ligands are controlled by the alkyl or aryl substituents at the sp2-hybridized ring nitrogen (N3), allowing perpendicular alignment of the steric bulk to the plane of the pendant arms forming a deep (5–6 Å) well-protected cavity for ligand binding to the metal center (Fig. 2, Type C).

Fig. 3 Complexes containing sterically bulky tripodal ligands.

Prior to our work, only two tripodal NHC ligand systems were known. The mesitylene-anchored tris(carbene) ligand (Fig. 4, 1) was unique (22), yet metal complexation had not been achieved with this ligand. Thorough investigation by Nakai et al. of the coordination chemistry of 1 and its derivatives showed that the cavity of this ligand system can only host exceptionally large metal ions, such as the thallium(I) cation (23). Attempts to synthesize transition metal complexes of derivatives of 1 have been unsuccessful up to this point. The development of new tripodal NHC ligand systems for stabilization of a single transition metal center in a coordinatively unsaturated ligand environment to allow the binding and activation of small molecules in a controlled manner is discussed here. In particular, we describe the synthesis of two new classes of tripodal NHC ligands TIMER (1,1,1-tris(3-alkylimidazol-2-ylidene)methyl]ethane) (2R) and TIMENR (tris[2-(3-alkylimidazol-2-ylidene)ethyl]amine) (3R) and their coordination chemistry.

Fig. 4 Tripodal N-heterocyclic carbene chelators with mesitylene (mes-carbene, left), carbon (TIMER, center), and nitrogen (TIMENR, right) anchoring units.

The coordination chemistry of uranium centers with a classic Werner-type polyamine tripodal chelator is also being investigated (Fig. 5) with a goal of identifying and isolating uranium complexes with enhanced reactivity towards binding, activation, and functionalization of small molecules. Because of the large size of the uranium center, instead of using a single atom anchor, the small molecule 1,4,7-triazacyclononane is used. Enacting a small, weakly binding molecule in this position protects one side of the uranium center from unwanted side and decomposition reactions. Each nitrogen contains an alkyl-substituted aryloxide pendant arm which coordinates strongly to the uranium center in a distorted trigonal planar fashion. Because the polyamine chelator is a weak ligand for uranium ions, the metal orbitals do not participate in strong metal–ligand interactions, thus creating a more electron-rich uranium center for small-molecule activation trans to the tacn anchor. This coordination geometry places the aliphatic ortho substitutents (R) perpendicular to the plane formed by the aryloxides, making a protective cavity around the uranium ion similar to that for the NHC ligand system. Specifically, we show herein that the introduction of hexadentate tris-anionic 1,4,7-tris(3,5-alkyl-2-hydroxybenzylate)-1,4,7-triazacyclononane derivatives ((RArO)3tacn3− with R = tert-butyl (t-Bu) (24) and 1-adamantyl (Ad) (25)) to redox-active uranium centers results in formation of stable, coordinatively unsaturated core complexes with a single axial coordination site (L) available for ligand binding, substitution reactions, and redox events associated with small-molecule activation and functionalization.

Fig. 5 Tris-aryloxide triazacyclononane ligand for uranium coordination chemistry.

The molecular architecture of the axial binding site is dependant on the...

Erscheint lt. Verlag 6.10.2008
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Technik
ISBN-10 0-08-092056-X / 008092056X
ISBN-13 978-0-08-092056-6 / 9780080920566
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95